
Nick Nikiforakis

CSE 361: Web Security

Infrastructure Security

HTTP Desync Attacks

HTTP Front-End and Back-End Servers

ÅIn real-world settings, you often have a reverse proxy

ÅMultiple incoming requests (different TCP connections)

ÅSingle TCP connection between front-end and back-end servers

ÅWhat happens if nginx and Django have a different understanding of

how long a HTTP request is?

3

HTTP: How does a server determine length of content?

ÅOption 1: Content-Length: $length header

ÅRead the value, subsequently read $length bytes

ÅOption 2: Transfer-Encoding: chunked

1. Read single line, treat as hexadecimal representation of $length for data
to come
ÅStop reading if $length = 0

2. Read $length bytes

3. Go to step 1

ÅWhat happens if you have both?

ÅRFC 2616 says: If a message is received with both a Transfer-Encoding
header field and a Content-Length header field, the latter MUST be
ignored.

4

Pitfalls in parsing HTTP headers

ÅWhat happens if front-end takes first occurrence of the header, but

back-end takes the last?

5

POST / HTTP/1.1

Host: example.com

Content - Length: 6

Content - Length: 5

12345G

POST / HTTP/1.1

Host: example.com

Content - Length: 6

Content - Length: 5

12345G

POST / HTTP/1.1

Host: example.com

Content - Length: 6

Content - Length: 5

12345 G

[https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn]

Pitfalls in parsing HTTP headers

ÅNow assume a second request, from a benign client

6

POST / HTTP/1.1

Host: example.com

Cookie: session=1234

Content - Length: 6

123456

POST / HTTP/1.1

Host: example.com

Content - Length: 6

Content - Length: 5

12345G

POST / HTTP/1.1

Host: example.com

Cookie: session=1234

Content - Length: 6

123456

POST / HTTP/1.1

Host: example.com

Content - Length: 6

Content - Length: 5

12345

GPOST / HTTP/1.1

Host: example.com

Cookie: session=1234

Content - Length: 6

123456

[https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn]

Result: Desync Attacks

ÅFront- and Back-end have different understanding of requests

ÅCan smuggle in requests

ÅCan hijack other user's requests

7

Result: Desync Attacks

ÅFront- and Back-end have different understanding of requests

ÅCan smuggle in requests

ÅCan hijack other user's requests

8

POST / HTTP/1.1

Host: example.com

Content-Length: 57

Content-Length: 1

1POST HTTP /sendmessage?to=attacker

Host: example.com

X: X

A
tt
a

c
k
e

r

POST /sendmessage?to=user HTTP/1.1

Host: example.com

Content-Length: 14

message=secret

V
ic

ti
m

POST HTTP /sendmessage?to=attacker

Host: example.com

X: XPOST /sendmessage?to=user HTTP/1.1

Host: example.com

Content-Length: 14

message=secret

POST / HTTP/1.1

Host: example.com

Content-Length: 57

Content-Length: 1

1

B
a
c
k
e
n
d

Additional problems in Desync attacks

ÅSome back-end systems look for the substring "chunked"

ÅAttack: use Content-Length to fool front-end into accepting single request,

use Transfer-Encoding: Xchunked to force TE for back-end

ÅSome back-end systems allow for whitespaces other than space

ÅTransfer-Encoding:\tchunked ignored by front-end, understood by back-end

9

Transport Layer Security

Network Attacker

ÅResides somewhere in the communication link between client and

server

ÅTries to disturb the confidentiality, integrity and authenticity of the

connection

ÅObservation of traffic (passive eavesdropper)

ÅFabrication of traffic (e.g., injecting fake packets)

ÅDisruption of traffic (e.g., selective dropping of packets)

ÅModification of traffic (e.g., changing unencrypted HTTP traffic)

Å"Man in the middle"

11

Possible types of a network attacker

ÅWithin same network (ARP poisoning)

ÅInternet Service Provider (complete access to all traffic)

ÅLaw Enforcement (access to traffic for specific user/to specific server)

Å... GCHQ, NSA, et al. (everywhere really)

12

