
Nick Nikiforakis

CSE 361: Web Security

Attacking the Same-Origin Policy

Same-Origin Policy in Action

2

http://kittenpics.org

https://gmail.com

http://example.org:80/path/

Protocol Hostname
Port

Attacking the Same-Origin Policy: DNS Rebinding

• Same-Origin Policy is based on the hostname

• Hostname is not permanently bound to an IP address

• Attacker wants to gain access to network behind a firewall

• Idea: abuse Time-To-Live of DNS

3

DNS Rebinding - Concept

4

I want to go to

kittenpics.org

kittenpics.org?

194.213.5.8

10.10.10.20

10.10.10.10

function getInternal() {
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://kittenpics.org");
xhr.send();
...

}
setTimeout(getInternal, 1000);

kittenpics.org

A 194.213.5.8

TTL 1s

DNS Rebinding - Concept

5

194.213.5.8

10.10.10.20

10.10.10.10

function getInternal() {
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://kittenpics.org");
xhr.send();
...

}
setTimeout(getInternal, 1000);

kittenpics.org?

kittenpics.org

A 10.10.10.20

TTL 1s

DNS Rebinding - A Brief History

• 1996 Princeton Attack
• Not real DNS Rebinding, rather two response (attacker and target), specifically

targeted a bug in Java's VM
• Mitigation: Java "pins" IP address used first

• 2002 Adam Megacz
• Domain Relaxation, bind attacker.org to target, sub.attacker.org to own site

(Recall the new domain relaxation rules?)
• Mitigation: IE pins for 30 minutes, other browser do similar things

• 2006 Martin Johns
• IE and Firefox dropped pin whenever a connection to the IP failed

• 2006 Kanatoko
• same for Flash, but even with sockets

• 2013 Johns et al.
• Using the HTML5 AppCache

6

Modern DNS rebinding

• Browsers only have a finite DNS cache size

• Chrome 25 had 100, Chrome 26 1000, nowadays 1600

• Idea: evict existing entry by flooding the DNS cache

• after that, have fun with the rebound IP

7

for(var i = 0; i < 1600; i++)
{

var xhr = new XMLHttpRequest();
xhr.open("GET", "http://" + i + ".attacker.com");

}

Same-Origin Policy in Action

8

http://kittenpics.org

https://gmail.com

Bypassing the SOP with Code Injection

9

http://kittenpics.org

https://gmail.com

Cross-Site Scripting

• Attacker can inject his own script into another site (cross-site)

• actually, might have to inject HTML markup

• ... which contains JavaScript code

• Injected code runs in origin of vulnerable page

• can do whatever legitimate code can do

• can modify page to attacker's liking

• Has roughly two orthogonal dimensions

• Location of vulnerable code (server or client)

• Persistence of attack payload (reflected or persistent)

10

A short history of Cross-Site Scripting

• First discovered in 1999

• December 1999 by Microsoft

• (allegedly) November 1999 by people at American Express

• Reflected Server-Side Cross-Site Scripting in several 404 pages

• Amit Klein coined the term "DOM-based Cross-Site Scripting" in 2005

• referring to the DOM as the part which would be abused to inject code

• .. does not really cover the eval case

• we refer to this as Client-Side Cross-Site Scripting

11

Impact of Cross-Site Scripting vulnerabilities

• JavaScript execution allows attacker to pretend to be

• ... user towards the server (e.g., posting content in social network)

• ... server towards the user (e.g., by modifying the look of a page)

• Obvious first target: reading cookies (session hijacking)

• somewhat mitigated by HTTPOnly cookies

• Other "use cases" include

• attacking browser-based password managers

• setting cookies

12

Real-World XSS: Ubuntu Forums in 2013

• Attacker found flaw in vBulletin forum software

• Announcements allowed for unfiltered HTML

• Attacker crafted malicious announcement and send link to admins

• Stated that there was a server error message on the announcement

• Instead, injected JavaScript code stole cookies (yes, cookies....)

• Given elevated privileges, the attacker could

upload PHP shell

• eventually dumped the users database and left

defacement on main page

13

Dimensions of Cross-Site Scripting

14

Server Client

Reflected

Persistent

echo "Welcome ".
$_GET["name"];

mysql_query("INSERT INTO posts ...");
// ..
$res = mysql_query("SELECT * FROM posts");
while ($row = mysql_fetch_array($res)) {
print $res[0];

}

document.write("Welcome " +
location.hash.slice(1));

localStorage.setItem("name",
location.hash.slice(1));

// ..
document.write("Welcome " +

localStorage.getItem("name"));

Reflected Server-Side Cross-Site Scripting

1. Attacker probes server for vulnerabilities

• Injecting markup into request parameters

(in case data is used within HTML)

• Injecting JavaScript in request parameters

(in case data is used within script)

15

Reflected Server-Side Cross-Site Scripting

1. Attacker probes server for vulnerabilities

• Injecting markup into request parameters

(in case data is used within HTML)

• Injecting JavaScript in request parameters

(in case data is used within script)

2. Once reflected potentially dangerous

content is found, injects complete

script

16

Reflected Server-Side Cross-Site Scripting

1. Attacker probes server for vulnerabilities

• Injecting markup into request parameters
(in case data is used within HTML)

• Injecting JavaScript in request parameters
(in case data is used within script)

2. Once reflected potentially dangerous
content is found, injects complete
script

3. Crafts specific attack payload, e.g.,
to steal cookie

17

Reflected Server-Side Cross-Site Scripting

1. Attacker tricks victim into visiting link

• Sends email with link

• Embeds iframe to vulnerable site on his

own domain

18

http://example.org/?foo=
<script>attack()</script>

Reflected Server-Side Cross-Site Scripting

1. Attacker tricks victim into visiting link

• Sends email with link

• Embeds iframe to vulnerable site on his

own domain

• Malicious payload is reflected from server

• May interact with server as the user

• May leak sensitive information (e.g.,

cookie) to the attacker

19

http://example.org/?foo=
<script>attack()</script>

Reflected Server-Side Cross-Site Scripting: Examples

• Most frequently occurs in search fields

• echo '<input type="text" name="searchword“ value="'.$_REQUEST["searchword"].'">';

• Custom 404 pages

• echo 'The URL '.$_SERVER['REQUEST_URI'].' could not be found';

20

Example: exploiting reflected server-side XSS

21

<?php

// load avatar

echo "";

?>

• Exploit payload:

• Close img tag: '>

• Add payload: <script>alert(1)</script>

• Visit URL

• http://example.org/?user= '><script>alert(1)</script>

• <script>alert(1)</script>'>

Dimensions of Cross-Site Scripting

22

Server Client

Reflected

Persistent

echo "Welcome ".
$_GET["name"];

mysql_query("INSERT INTO posts ...");
// ..
$res = mysql_query("SELECT * FROM posts");
while ($row = mysql_fetch_array($res)) {
print $res[0];

}

document.write("Welcome " +
location.hash.slice(1));

localStorage.setItem("name",
location.hash.slice(1));

// ..
document.write("Welcome " +

localStorage.getItem("name"));

<script>
attack()
</script>

<script>
attack()
</script>

1

2

3

<script>
attack()
</script>

Persistent Server-Side Cross-Site Scripting

1. Attacker probes server for vulnerabilities

• Injecting markup into request parameters

(in case data is used within HTML)

• Injecting JavaScript in request parameters

(in case data is used within script)

2. Data is not immediately reflected, rather

stored in database

24

<script>
attack()
</script>

Persistent Server-Side Cross-Site Scripting

1. Attacker probes server for vulnerabilities

• Injecting markup into request parameters

(in case data is used within HTML)

• Injecting JavaScript in request parameters

(in case data is used within script)

2. Data is not immediately reflected, rather

stored in database

3. Attacker checks the stored entry

25

<script>
attack()
</script>

Persistent Server-Side Cross-Site Scripting

1. Attacker probes server for vulnerabilities

• Injecting markup into request parameters

(in case data is used within HTML)

• Injecting JavaScript in request parameters

(in case data is used within script)

2. Data is not immediately reflected, rather

stored in database

3. Attacker checks the stored entry

4. Every user of the site is attacked

26

<script>
attack()
</script>

Persistent Server-Side Cross-Site Scripting: Examples

• Anything that stores data

• Guestbooks

• Forums

• Profile pages on social media

• More interesting vectors

• Description of books on Amazon

• Abstract of a book on Amazon

• scanned the XSS payload with OCR

•

27

Persistent Server-Side Cross-Site Scripting: MySpace

worm
• MySpace allowed certain HTML tags in profiles

• tried to block others

• Samy Kamkar (April 2005) found bypass

• <div id="mycode" expr="alert('hah!')"
style="background:url('java
script:eval(document.all.mycode.expr)')">

• Attack payload added Samy as a friend
• According to Samy, goal was to "befriend girls"

• and updated the profile of the infected victim
• in turn, all friends could be infected

• over 1,000,000 friends (over 3% of MySpace) within 20 hours

28

Preventing Server-Side Cross-Site Scripting

• Option 1: Input Validation/Sanitization

• Check input against list of
allowed/expected characters

• Is this a number? Is this an email?

• Can only be considered first line of defense

• Usage of data might not be known at that point

• Hard to get right, for the general case

• (bad) alternative: removing unwanted elements

• Known as blacklisting/blocklisting

• e.g., all script tags

• simple replace does not suffice:
<scr<script>ipt>

29

foreach ($_REQUEST as $key => value) {
$_REQUEST[$key] = preg_replace("[^0-9a-zA-Z]",

"", $value);
}
//
$username = base64_decode($_REQUEST["user"]);

Preventing Server-Side Cross-Site Scripting

• Option 2: Output Encoding

• When using the data, encode it

• depending on context, different encoders might be necessary

30

PHPHTML Encoding

Preventing Server-Side Cross-Site Scripting

• Option 2: Output Encoding

• When using the data, encode it

• depending on context, different encoders might be necessary

31

URL Encoding
PHP

Preventing Server-Side Cross-Site Scripting: Best

Practices
• Avoid creating your own filters

• frameworks typically have (hopefully) context-aware filters

• read the exact manual of functions if you use them (e.g., htmlentities)

• Do not allow user-provided markup

• recall MySpace?

• if need be, use well-defined alternative mark-up languages

• BBCode, Markdown,

• Disable error reporting to the Web frontend

• among other reasons: stack trace might contain unencoded parameters...

32

Dimensions of Cross-Site Scripting

33

Server Client

Reflected

Persistent

echo "Welcome ".
$_GET["name"];

mysql_query("INSERT INTO posts ...");
// ..
$res = mysql_query("SELECT * FROM posts");
while ($row = mysql_fetch_array($res)) {
print $res[0];

}

document.write("Welcome " +
location.hash.slice(1));

localStorage.setItem("name",
location.hash.slice(1));

// ..
document.write("Welcome " +

localStorage.getItem("name"));

Reflected Client-Side Cross-Site Scripting

1. Attacker analyzes client-side JavaScript code

for vulnerabilities

• searches for unfiltered usage of attacker-

controllable data (e.g., the URL)

• such data may be contained in URL fragment

• Important: not sent to the server

34

Reflected Client-Side Cross-Site Scripting

1. Attacker analyzes client-side JavaScript code for
vulnerabilities

• searches for unfiltered usage of attacker-
controllable data (e.g., the URL)

• such data may be contained in URL fragment
• Important: not sent to the server

2. Attacker tricks victim into visiting URL with
payload, e.g., in fragment

• vulnerable JavaScript is delivered to client

• exploit triggered without payload being sent to
server (if in fragment)

35

http://example.org/#
<script>attack()</script>

Relevant APIs for Client-Side Cross-Site Scripting

36

• document.write, document.writeln

• Can write new script tags which will be executed

• eval, setTimeout, setInterval

• Directly executes JavaScript code

• innerHTML, outerHTML

• will not execute script elements, but event handlers work

•

Example: exploiting reflected client-side XSS

• Important: iframe is one of very few elements that needs to be closed
• anything between iframe tags is shown only if browser does not support framing

• Exploit payload:
• Close opening iframe tag: '>
• Close iframe: </iframe>
• Add payload: <script>alert(1)</script>

• Exploit URL:
http://example.org/#'></iframe><script>alert(1)</script>

37

// ensure that things are always unencoded, as browsers differ in their behaviour

var hash = unescape(location.hash);

document.write("<div><iframe src='https://ad.com/iframe.html?hash=" + hash + "'></iframe></div>");

Dimensions of Cross-Site Scripting

38

Server Client

Reflected

Persistent

echo "Welcome ".
$_GET["name"];

mysql_query("INSERT INTO posts ...");
// ..
$res = mysql_query("SELECT * FROM posts");
while ($row = mysql_fetch_array($res)) {
print $res[0];

}

document.write("Welcome " +
location.hash.slice(1));

localStorage.setItem("name",
location.hash.slice(1));

// ..
document.write("Welcome " +

localStorage.getItem("name"));

Persistent Client-Side Cross-Site Scripting

1. Attacker analyzes client-side JavaScript code

for vulnerabilities

• searches for unfiltered usage of attacker-

controllable data (e.g., the URL) flowing to

persistent storage

• Searches for execution of persistent storage

• Example: cookie stores first visited URL, is used in

later eval statement

39

<script>
persist()
</script>

1

2

3

http://example.org/#

<script>persist()</script>

<script>
persist()
</script>

Persistent Client-Side Cross-Site Scripting

1. Attacker analyzes client-side JavaScript code for
vulnerabilities

• searches for unfiltered usage of attacker-controllable
data (e.g., the URL) flowing to persistent storage

• Searches for execution of persistent storage
• Example: cookie stores first visited URL, is used in later eval

statement

2. Attacker tricks victim into visiting URL with
payload, e.g., in fragment

• data-persisting JavaScript is delivered to client

• exploit payload is stored in persistent storage

• Alternatively: exploit other type of XSS to gain
permanent foothold in the client's browser

41

<script>
persist()
</script>

http://example.org/#

<script>persist()</script>

Persistent Client-Side Cross-Site Scripting

1. Attacker analyzes client-side JavaScript code

for vulnerabilities

2. Attacker tricks victim into visiting URL with

payload, e.g., in fragment

3. On every page visit, payload is extracted

from persistent storage

• flow from storage to execution sink

• malicious payload is executed

42

<script>
persist()
</script>

Sources for Persistent Client-Side Cross-Site Scripting

• Cookies

• bound to eTLD+1 or hostname

• limited character set
• e.g., no semicolon

• 4,096 chars at most

• Web Storage

• bound to an origin

• Local Storage

• Session Storage

• IndexedDB

• bound to origin

43

• HTML Markup

• JavaScript

• Script source

element.innerHTML = "foobar";

eval("x = 'foobar'");

var script =

document.createElement("script");

script.src="//foobar.script.com";

document.body.appendChild(script)

Interlude: HTTP Strict Transport Security

• HTTP header (Strict-Transport-Security) sent by server

• only valid if sent via HTTPS

• Strict-Transport-Security: max-age=<expiry in seconds>
• includeSubDomains: header is valid for all subdomains

• preload: allows for inclusion in preload list

• ensures that site cannot be loaded via HTTP until expiry is reached

• Domains can be preloaded in browsers

• HSTS preload list (https://hstspreload.org/)

• only possible with at least 18 weeks max-age, includeSubDomains

and automatic redirect from HTTP

44

Persistent Client-Side Cross-Site Scripting: Attacker

Models
• Requirement for successful attack: persisted malicious payload

• extracted on every page load; single "infection" is sufficient

• Attacker Model #1: Network Attacker

• can modify unencrypted connections

• cannot get arbitrary TLS certificates

• Capabilities

• Cookies: set cookies for any domain

without HSTS

• HSTS must use includeSubDomains

• Local Storage: inject items on

HTTP sites only

45

Persistent Client-Side Cross-Site Scripting: Attacker

Models
• Attacker Model #2: Web Attacker

• can force victim's browser to visit any URL

• Attack Vector #1: Abuse existing XSS flaw

• allows to inject data into origin (Storage) or domain (cookies)

• HTTPS does not help at all

• Attack Vector #2: Abuse flows into storage

• requires a flow into storage item

• important: same storage item must be

later used

• hard to find in practice

46

Preventing Client-Side Cross-Site Scripting

• Problems originate from use of insecure APIs

• eval, document.write, innerHTML

• and the use of user-provided input in them

• Depending on the context, functionally equivalent APIs exist

• document.createElement, element.innerText

• JSON.parse

47

function writeURLInsecure() {
document.write("<p>The current URL is: "
+ location.href + "</p>");

}

function writeURLSecure() {
var p = document.createElement("p");
p.innerText = "The current URL is: " + location.href;
document.write(p.outerHTML);

}

Preventing Client-Side Cross-Site Scripting

• element.src ensures that attacker-controllable data can only
be in src attribute

48

function loadAdvertisementInsecure() {
document.write("<script src='http://ad.com/?referrer=" + location.href + "'></script>");

}

function loadAdvertisementSecure() {
var script = document.createElement("script");
script.src = 'http://ad.com/?referrer=' + location.href;
document.body.appendChild(script);

}

Preventing Client-Side Cross-Site Scripting

• Depending on the desired use, either

• use JSON.parse

• use object[key] = value notion

49

function parseJSONInsecure(json) {
var object = eval(json);

}

function parseJSONSecure(json) {
var object = JSON.parse(json);

}

function registerGlobalInsecure(key, value) {
eval(key + " = '" + value + "'");

}

function registerGlobalSecure(key, value) {
// check if key is something you want to
// have overwritten in the first place…
window[key] = value;

}

Dimensions of Cross-Site Scripting

50

Server Client

Reflected

Persistent

echo "Welcome ".
$_GET["name"];

mysql_query("INSERT INTO posts ...");
// ..
$res = mysql_query("SELECT * FROM posts");
while ($row = mysql_fetch_array($res)) {
print $res[0];

}

document.write("Welcome " +
location.hash.slice(1));

localStorage.setItem("name",
location.hash.slice(1));

// ..
document.write("Welcome " +

localStorage.getItem("name"));

Summary

51

Credits

• Original slide deck by Ben Stock

• Modified by Nick Nikiforakis

52

	Slide 1
	Slide 2: Same-Origin Policy in Action
	Slide 3: Attacking the Same-Origin Policy: DNS Rebinding
	Slide 4: DNS Rebinding - Concept
	Slide 5: DNS Rebinding - Concept
	Slide 6: DNS Rebinding - A Brief History
	Slide 7: Modern DNS rebinding
	Slide 8: Same-Origin Policy in Action
	Slide 9: Bypassing the SOP with Code Injection
	Slide 10: Cross-Site Scripting
	Slide 11: A short history of Cross-Site Scripting
	Slide 12: Impact of Cross-Site Scripting vulnerabilities
	Slide 13: Real-World XSS: Ubuntu Forums in 2013
	Slide 14: Dimensions of Cross-Site Scripting
	Slide 15: Reflected Server-Side Cross-Site Scripting
	Slide 16: Reflected Server-Side Cross-Site Scripting
	Slide 17: Reflected Server-Side Cross-Site Scripting
	Slide 18: Reflected Server-Side Cross-Site Scripting
	Slide 19: Reflected Server-Side Cross-Site Scripting
	Slide 20: Reflected Server-Side Cross-Site Scripting: Examples
	Slide 21: Example: exploiting reflected server-side XSS
	Slide 22: Dimensions of Cross-Site Scripting
	Slide 23
	Slide 24: Persistent Server-Side Cross-Site Scripting
	Slide 25: Persistent Server-Side Cross-Site Scripting
	Slide 26: Persistent Server-Side Cross-Site Scripting
	Slide 27: Persistent Server-Side Cross-Site Scripting: Examples
	Slide 28: Persistent Server-Side Cross-Site Scripting: MySpace worm
	Slide 29: Preventing Server-Side Cross-Site Scripting
	Slide 30: Preventing Server-Side Cross-Site Scripting
	Slide 31: Preventing Server-Side Cross-Site Scripting
	Slide 32: Preventing Server-Side Cross-Site Scripting: Best Practices
	Slide 33: Dimensions of Cross-Site Scripting
	Slide 34: Reflected Client-Side Cross-Site Scripting
	Slide 35: Reflected Client-Side Cross-Site Scripting
	Slide 36: Relevant APIs for Client-Side Cross-Site Scripting
	Slide 37: Example: exploiting reflected client-side XSS
	Slide 38: Dimensions of Cross-Site Scripting
	Slide 39: Persistent Client-Side Cross-Site Scripting
	Slide 40
	Slide 41: Persistent Client-Side Cross-Site Scripting
	Slide 42: Persistent Client-Side Cross-Site Scripting
	Slide 43: Sources for Persistent Client-Side Cross-Site Scripting
	Slide 44: Interlude: HTTP Strict Transport Security
	Slide 45: Persistent Client-Side Cross-Site Scripting: Attacker Models
	Slide 46: Persistent Client-Side Cross-Site Scripting: Attacker Models
	Slide 47: Preventing Client-Side Cross-Site Scripting
	Slide 48: Preventing Client-Side Cross-Site Scripting
	Slide 49: Preventing Client-Side Cross-Site Scripting
	Slide 50: Dimensions of Cross-Site Scripting
	Slide 51: Summary
	Slide 52: Credits

