
Nick Nikiforakis

CSE 361: Web Security

Introduction and History of the Web

Who am I, and where can you find me?

• Nick Nikiforakis

• Associate Professor in Department of Computer Science

• Research interests:

• Web security and Privacy

• DNS security

• Intrusion detection

• Office: 361

2

About the course

• Learn the ins and outs of securing web applications

• Theory: Lectures, mandatory readings, etc.

• Practice: Gradually (throughout the semester) secure a vulnerable web

application

• CSE 331 (Computer Security Fundamentals) used to be a pre-req. for

this course

• We will cover as much "generic" security as necessary for this course

3

Logistics

• Class will be on Tuesdays and Thursdays, 5 PM – 6:20 PM

• Office Hours: Tuesdays and Thursdays, 3 PM – 4 PM

• Grade breakdown

• Individual assignments (15%)

• Mostly reading papers, writing summaries, and answering questions

• Group assignments (25%)

• Semester-long project-like assignments on securing a web application

• Midterm (25%)

• Final (35%)

4

Logistics

• No official textbook required

• Slides and mandatory readings should be

sufficient

• You should attend lectures

• Not mandatory but highly encouraged

• Live demos will not be recorded

• Optional book

• “Web Application Security” book by Andrew

Hoffman

5

Late submission policy

• Paper summaries, lab reports, and final project
must be delivered by the specified deadlines.

• Hand them in on time

• For every day that you are late, there will be a
10% penalty

• Health-related exemptions will be handled via
the appropriate official channels

6

Code of Conduct

• The work that you present as your own, should be your own

• Cite the resources that you used (other people’s code, documents, etc.)

• Don’t allow your code/paper summaries to be copied

• Don’t copy other people’s code or paper summaries

• Anything short of the above, will be grounds for immediate failing of the

class and an official report of plagiarism

7

Generative AI… Just say "No"

• The purpose of this class is for you to learn web security

• Not for you to ask the LLM to do your homework

• It's like going to the gym and using a robot to

do your strength training

• It will lift more than you, but you won't get strong

• Short-term reason

• Moral thing to do

• Long-term reason

• If you do 1% of the work and the LLM does 99%,

who is going to give you a six-figure salary?

8

The Web has won

• Used by billions of people to retrieve information

• 2B users monthly on Facebook

• 2.3M searches per second on Google

• 464M visitors to ChatGPT each month

• Fully-fledged application platform

• web-based office applications
• MS Office vs. MS 365

• Large coverage in mobile applications

• many mobile apps/SDKs are just Web views

• Desktop apps can just be Electron web apps

9

... and the hackers with it

10

Why Web Security?

11

Image source: https://www.imperva.com/blog/the-state-of-vulnerabilities-in-2020/

Short History of the Web

From Hypertext to the World Wide Web

• Hypertext concept first mentioned in 1945

• Theoretical, Memex (Memory Extender) system by Vannevar Bush

• No "linear text" anymore, links between documents

• In 1980, Tim Berners-Lee developed ENQUIRE

• local links between documents only

• In 1989, Berners-Lee wrote "Information Management: A Proposal"

• extends Hypertext to multiple servers and links between them

• Basis for the modern Web

13

HTTP and HTML

• Web as envisioned by T. Berners-Lee

• document-centric

• stateless (just documents linking to one another)

• structured (based on SGML)

• tags for semantic interpretation

• HTTP 0.9 introduced in 1991

• required to answer with an HTML page

• no headers either way (introduced in 1992 though)

• HTML initially supported 18 tags

• 11 made it into HTML4 and later versions

14

Uniform Resource Locator (URL)

15

http://foo:bar@example.org:80/path/to/doc.html?p1=v1&p2=v2#top

Protocol

Username/

Password

Hostname

Port

Path

Query

String

Fragment

Fragments are not sent

to the server

HTTP Evolution over Time: HTTP 0.9

• Requirements

• as simple as possible

• serve single HTML pages

• Result

• only GET requests

• no client or server headers

• server directly answers with HTML body

GET /path/to/doc.html

<html>…

(connection closed)

16

The first "real" browser: Mosaic (1993)

• Initial version of HTML could only link to images

• allowed to be on remote server

• Mosaic introduced the tag for inline

images

• Implemented by Marc Andreessen

• Images could reside on remote server

• Birth of the multi-origin Web

• Followed by many HTML tags later (embed,

object, style, script, …)

17

We’ve come a long way

18

HTTP Evolution over Time: HTTP 1.0 (1991-1995)

• Requirements

• serve content other than plain text documents

• allow for authentication

• allow for transmission of meta information, e.g.,

age of file

• transmit data to the server (via forms)

• Result

• Mandatory HTTP version in request

• Optional headers in request and response

• Status Line in response

• New methods: POST and HEAD

GET / HTTP/1.0
Host: example.org

HTTP/1.0 200 OK
Content-Length: 123

<html>…
(connection closed)

19

HTTP Requests (since HTTP/1.0)

• Consists of several, partially optional

components

• Request Line with Verb, Path, and Protocol

• List of HTTP headers, as header:value

• Empty line to end headers

• Optional body message (used, e.g., with

POST requests)

GET /index.html HTTP/1.0
Host: stonybrook.edu
Cookie: hello=1

20

HTTP GET request

• Purpose: retrieve resource from server

• Should not cause side effects on Web server’s state

• dubbed "idempotent" in W3C standard

• although it does often cause side effects in practice, due to developers

• Should not carry a message body

• Parameters passed via URL

• Special characters percent-encoded (hex value of char, e.g., ? = %3F)

• Usually logged on server side together with requested file

GET /index.html?name=value%3F HTTP/1.0
Host: stonybrook.edu

21

HTTP POST request

• Purpose: send data to the server

• for storage or processing

• should be used for state-changing operations

• Can be combined with GET parameters

• Message body contains data

• Depending on content-type, percent-encoded or plain

POST /index.html?name=value%3F HTTP/1.0
Host: stonybrook.edu
Content-Length: 10
Content-Type: application/json

{"a": "?"}

POST /index.html?name=value%3F HTTP/1.0
Host: stonybrook.edu
Content-Length: 5
Content-Type: application/x-www-form-urlencoded

a=%3F

22

HTTP Response (since HTTP/1.0)

• Status Line: Protocol, Status Code, and Status Text

• List of HTTP headers, as header:value

• Empty line to end headers

• Response Body

HTTP/1.0 200 OK

Server: nginx
Content-Type: text/html
Content-Length: 123

<html>…</html>

23

HTTP Response Codes

• 2xx Success

• 200 OK

• 206 Partial Content (for range requests)

• 3xx Redirection

• 301 Moved Permanently (always redirect to new URL)

• 302 Found (redirect once, don’t store redirect)

• 304 Not Modified (not changed since last client request, not transferred)

• 307 Moved Temporarily (only redirect to new URL this time)

24

HTTP Response Codes

• 4xx Client errors

• 400 Bad Request (e.g., no carriage return in HTTP request)

• 401 Unauthorized (used for HTTP authentication)

• 403 Forbidden

• 404 Not Found

• 405 Method Not Allowed

• 418 I’m a teapot (April Fool’s Joke, see RFC 2324)

• 5xx Server errors

• 500 Internal Server Error

• 502 Bad Gateway (e.g., timeout in reverse proxies)

25

First Security Considerations: HTTP Authentication

(1993)
• Need for authentication/authorization was recognized early on

• HTTP remained stateless

• Authentication via HTTP header

• Not too useful for session management though

GET /protected

GET /protected
Authorization: Basic … <base64>

HTTP 401 Unauthorized
WWW-Authenticate: Basic realm=“…”

26

First Security Considerations: HTTP Authentication

(1993)
• Need for authentication/authorization was recognized early on

• HTTP remained stateless

• Authentication via HTTP header

• Not too useful for session management though

GET /protected

GET /protected
Authorization: Basic … <base64>

HTTP 401 Unauthorized
WWW-Authenticate: Basic realm=“…”

27

Cookies (1994)

• Adding state to the stateless Web

• Required to develop applications which

should re-identify a user

• Initially added in Netscape Navigator

• set via HTTP response header

• sent along with every subsequent request

• … until lifetime is exceeded, or cookie is

deleted

28

JavaScript (1995)

• Netscape wanted a "glue language" added to HTML

• Brendan Eich was hired by Netscape to "implement

Scheme in the browser"

• Instead, he was tasked with developing Mocha (initially

dubbed LiveScript)

• in the first beta release, already renamed to JavaScript

• Java was very popular back then

• JavaScript later specified as ECMAScript (ECMA-262)

29

30

Frames (1995) and Iframes (1997)

• Concept of frames to display more than one
HTML page in a window

• reduce bandwidth by splitting page

• fixed navigation elements

• Frames are permitted to come from different
origins

• Each frame behaves like a browser window

• Content rendered and interpreted as if page is
loaded regularly

• Reason for introducing the Same-Origin Policy

• separates frames if they don’t share an origin

• only introduced after first cases of abuse…

31

Cascading Style Sheets (1996)

• HTML was initially designed to reflect structure of a

document

• Title, Headings, Sections, Listings, Lists, …

• Web became more popular, should look nicer

• design tags were add, such as font, b, i

• CSS added to separate structure and presentation

• Declarative syntax

• Could be included remotely or added inline

• Capable of e.g., background images, element placing,

opacity

32

The First Browser War (1996-1999)

• Market share battle between Netscape

and Internet Explorer

• Goal: work with as many sites as possible

to win the battle (compatibility)

• everybody was "programming" bad HTML

• resulted in highly relaxed parsing process

• error-tolerant to a fault…

• Microsoft’s Internet Explorer won by a

landslide

• also caused by Microsoft’s OS dominance

By Wereon - Image:Browser Wars.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1128061

33

HTTP Evolution over Time: HTTP 1.1 (finalized 1999)

• Requirements

• Increased resource size requires other transport and caching strategies

• Fix some ambiguities in the previous protocol versions

• Assess server’s capabilities to handle requests

• Result

• New methods: PUT (similar to POST), DELETE,

TRACE, CONNECT (proxies), OPTIONS

• Keep-Alive connections

• Accept-Encoding info for the server

• Chunked transfers, range transfers

• Standardized in RFC 2616

GET / HTTP/1.1
Host: example.org

HTTP/1.0 200 OK
Transfer-Encoding: chunked

7b
<html>…
0
(connection closed)

34

HTTP Evolution over Time: HTTPS (RFC 2818 finalized

1999)
• Initial discussions about S-HTTP (RFC 2660)

• unencrypted header, only page data and POST bodies encrypted

• Instead: HTTP over TLS/HTTP over SSL/HTTP Secure (HTTPS)

• encapsulates plain HTTP into TLS tunnel

• Server certificate can be verified via chain of trust

• Trusted root CAs known to browser

• Until 2011, only one hostname per IP

• Nowadays, Server Name Indication (SNI)

allows multiple vhosts via TLS

https://www.welivesecurity.com/wp-content/uploads/2016/09/HTTPS-TLS-SSL-Sicherheits.png

35

Years of Stagnation (2000-2003)

• Netscape gave up fighting Internet Explorer

• Microsoft reduced investment into new client-side
technologies

• IE4: September 1997

• IE5: March 1999

• IE6: August 2001

• IE7: October 2006

• New features only added through plugins

• Flash: audio, video, vector graphics, cross-domain
requests

• Google Gears: client-side persistence, drag&drop,
offline support

36

HTML5 and the WHATWG (2004)

• New browsers introduced to market

• Apple Safari (2003) and Mozilla Firefox (2004)

• Introduction of the Web Hypertext Application

Technology Working Group (WHATWG)

• Members from Apple, Mozilla and Opera

• Concerned with "the W3C’s direction with XHTML,

lack of interest in HTML and apparent disregard for

the needs of real-world authors"

• Lead to a number of innovations in the browser

• Still going on today

• Final specification of HTML5 by November 2014

37

HTML5 - Highlights

• Audio and Video tags

• previously only possible with, e.g., Flash

• Web Storage

• Easy key/value store on the client

• Can "only" store strings (objects via serialization)

• Session and (persistent) Local Storage

• Web Messaging

• postMessages (we'll cover this soon)

• Web Sockets

• duplex communication channels with the server

38

HTML5 - Highlights

• Offline Cache
• controllable caching behavior enables offline apps

• Web Workers
• allow developers to have tasks run in background

• Geo Location
• handy feature when displaying maps or local info

• IndexedDB
• Mixture of SQL and Web Storage

• New (semantic) HTML tags
• nav, menuitem, main, footer, header, ...

39

The Web 2.0 (2004 - 2005)

• With new functionality in browser came more powerful Web applications

• Widespread adoption of Flash

• XMLHttpRequest (already implemented before under different name in IE)

API allowed for "Asynchronous JavaScript and XML" (AJAX)

• Dynamic mash-up web pages

• Popular application examples include:

• Google Mail

• Flickr

• Facebook

40

The Second Browser War (since 2005)

• Four major browsers: Internet Explorer, Chrome, Firefox,

Safari

• Lively competition (more or less)

• Web standards have been around long enough to focus

more on speed and not compatibility

• WebKit-based browsers (Chrome, Safari) are fastest nowadays

• Very active development especially of JavaScript engines

• Both compatibility and speed may be roadblocks for security

• Browser wars 1992-2024:

• https://www.youtube.com/watch?v=Hdit5-yFHI8

http://www.worthofweb.com/wp-content/uploads/2013/11/internet-browsers.png

http://media02.hongkiat.com/battle-of-browsers-artworks/browsers-battle.jpg

41

HTTP Evolution over Time: HTTP 2.0 (finalized 2015)

• Requirements

• Reduce overhead of uncompressed HTTP headers

• Ensure faster delivery of required resources to client

• Fix head-of-line blocking from HTTP/1.x

• Result

• Binary protocol

• HPACK header compression

• Server push

https://giuseppeciotta.net/static/images/h2mosaic_push.jpg

42

Summary (so far)

• Web was designed to link plain text documents

• Nowadays, we have an application model

• that is based on multi-origin documents,

• implements origin-based security models (albeit inconsistently),

• builds its UI based on at least three languages (HTML, CSS, and

JavaScript),

• and often uses non-security mechanisms (e.g., cookies) for security

purposes (e.g., authentication),

• and supports offline applications with client-side persistence.

• What could possibly go wrong?

44

Basic Web Paradigm

http://example.com

45

Modern Web Applications

http://example.com

Integration of third-party code

(e.g., Facebook apps)

46

Modern Web Applications

http://example.com

Integration of third-party code

and data as part of Mashup

47

Modern Web Applications

http://example.com

Integration of third-party code

as cross-domain JS libraries

48

Modern Web Applications

http://example.com

Increasing usage of third-party

JavaScript frameworks

49

Modern Web Applications

http://example.com

Client-side components for

cross-domain communication

and browser extensions

50

Modern Web Applications

http://example.com

(Partial) reliance on third-party

authentication providers

51

Modern Web Applications

http://example.com

Secondary view tailored for

usage with mobile devices

52

Security Implications

http://example.com

We merely control the server

53

Possible Attackers on the Web

http://example.com

54

Network Attacker

• Resides somewhere in the communication link between client and

server

• Tries to disturb the confidentiality, integrity, and authenticity of the

connection

• Observation of traffic (passive eavesdropper)

• Fabrication of traffic (e.g., injecting fake packets)

• Disruption of traffic (e.g., selective dropping of packets)

• Modification of traffic (e.g., changing unencrypted HTTP traffic)

• "Man in the middle" (MITM)

55

Remote Attacker

• Can connect to remote system via the network

• mostly targets the server

• Attempts to compromise the system (server-side attacks)

• Arbitrary code execution

• Information exfiltration (e.g., SQL injections)

• Information modification

• Denial of Service

56

Web Attacker

• Attacker specific to Web applications

• "Man in the browser"

• can create HTTP requests within user's browser

• can leverage the user's state (e.g., session cookies)

• Case of "confused deputy"

• Examples

• Cross-Site Scripting attacker: can execute arbitrary

JavaScript in authenticated user's context

• Cross-Site Request Forgery attacker: can force user's

browser to execute certain operations on vulnerable site

http://example.com

57

Social Engineering Attacker

• No real technical capabilities

• Abusing users rather than software vulnerabilities

• Can lure victim to perform certain tasks

• Clickjacking

• May use technical measures to ease his task

• Unicode URLs to easily fake

• Use well-known icons to suggest "secure" sites

58

Summary

59

Credits

• Original slide deck by Ben Stock

• Modified by Nick Nikiforakis

60

	Slide 1
	Slide 2: Who am I, and where can you find me?
	Slide 3: About the course
	Slide 4: Logistics
	Slide 5: Logistics
	Slide 6: Late submission policy
	Slide 7: Code of Conduct
	Slide 8: Generative AI… Just say "No"
	Slide 9: The Web has won
	Slide 10: ... and the hackers with it
	Slide 11: Why Web Security?
	Slide 12
	Slide 13: From Hypertext to the World Wide Web
	Slide 14: HTTP and HTML
	Slide 15: Uniform Resource Locator (URL)
	Slide 16: HTTP Evolution over Time: HTTP 0.9
	Slide 17: The first "real" browser: Mosaic (1993)
	Slide 18: We’ve come a long way
	Slide 19: HTTP Evolution over Time: HTTP 1.0 (1991-1995)
	Slide 20: HTTP Requests (since HTTP/1.0)
	Slide 21: HTTP GET request
	Slide 22: HTTP POST request
	Slide 23: HTTP Response (since HTTP/1.0)
	Slide 24: HTTP Response Codes
	Slide 25: HTTP Response Codes
	Slide 26: First Security Considerations: HTTP Authentication (1993)
	Slide 27: First Security Considerations: HTTP Authentication (1993)
	Slide 28: Cookies (1994)
	Slide 29: JavaScript (1995)
	Slide 30
	Slide 31: Frames (1995) and Iframes (1997)
	Slide 32: Cascading Style Sheets (1996)
	Slide 33: The First Browser War (1996-1999)
	Slide 34: HTTP Evolution over Time: HTTP 1.1 (finalized 1999)
	Slide 35: HTTP Evolution over Time: HTTPS (RFC 2818 finalized 1999)
	Slide 36: Years of Stagnation (2000-2003)
	Slide 37: HTML5 and the WHATWG (2004)
	Slide 38: HTML5 - Highlights
	Slide 39: HTML5 - Highlights
	Slide 40: The Web 2.0 (2004 - 2005)
	Slide 41: The Second Browser War (since 2005)
	Slide 42: HTTP Evolution over Time: HTTP 2.0 (finalized 2015)
	Slide 44: Summary (so far)
	Slide 45: Basic Web Paradigm
	Slide 46: Modern Web Applications
	Slide 47: Modern Web Applications
	Slide 48: Modern Web Applications
	Slide 49: Modern Web Applications
	Slide 50: Modern Web Applications
	Slide 51: Modern Web Applications
	Slide 52: Modern Web Applications
	Slide 53: Security Implications
	Slide 54: Possible Attackers on the Web
	Slide 55: Network Attacker
	Slide 56: Remote Attacker
	Slide 57: Web Attacker
	Slide 58: Social Engineering Attacker
	Slide 59: Summary
	Slide 60: Credits

