Scan Me If You Can:
Understanding and Detecting Unwanted Vulnerability Scanning

Xigao Li
Stony Brook University

Amir Rahmati
Stony Brook University

ABSTRACT

Web vulnerability scanners (WVS) are an indispensable tool for
penetration testers and developers of web applications, allowing
them to identify and fix low-hanging vulnerabilities before they are
discovered by attackers. Unfortunately, malicious actors leverage the
very same tools to identify and exploit vulnerabilities in third-party
websites. Existing research in the WVS space is largely concerned
with how many vulnerabilities these tools can discover, as opposed
to trying to identify the tools themselves when they are used illicitly.

In this work, we design a testbed to characterize web vulnerability
scanners using browser-based and network-based fingerprinting
techniques. We conduct a measurement study over 12 web vulner-
ability scanners as well as 159 users who were recruited to interact
with the same web applications that were targeted by the evaluated
WVSs. By contrasting the traffic and behavior of these two groups,
we discover tool-specific and type-specific behaviors in WVSs that
are absent from regular users. Based on these observations,

we design and build ScannerScope, a machine-learning-based,
web vulnerability scanner detection system. ScannerScope consists
of a transparent reverse proxy that injects fingerprinting modules
on the fly without the assistance (or knowledge) of the protected
web applications. Our evaluation results show that ScannerScope
can effectively detect WVSs and protect web applications against
unwanted vulnerability scanning, with a detection accuracy of
over 99% combined with near-zero false positives on human-visitor
traffic. Finally, we show that the asynchronous design of Scanner-
Scope results in a negligible impact on server performance and
demonstrate that its classifier can resist adversarial ML attacks
launched by sophisticated adversaries.

CCS CONCEPTS

« Security and privacy — Web application security; Intrusion
detection systems; Vulnerability scanners.

KEYWORDS

Web Vulnerability Scanner, Vulnerabilities, Fingerprinting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23, April 30-May 04, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04...$15.00
https://doi.org/10.1145/3543507.3583394

Babak Amin Azad
Stony Brook University

Nick Nikiforakis
Stony Brook University

ACM Reference Format:

Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. 2023.
Scan Me If You Can: Understanding and Detecting Unwanted Vulnerability
Scanning. In Proceedings of the ACM Web Conference 2023 (WWW °23), April
30-May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583394

1 INTRODUCTION

As the web continues to become the platform of choice for delivering
applications to users, attackers are increasingly targeting web
applications to compromise their underlying systems and exfiltrate
personal and financial data. Moreover, the popularity of certain web-
facing technologies leads to software monocultures where a single
high-impact vulnerability discovered in a single piece of software
can be weaponized against millions of worldwide deployments of
that software. Just in 2021, NIST recorded 18,378 vulnerabilities [26],
representing a new record, with many web-related, high-impact
vulnerabilities among them, including the recently discovered Log4]
vulnerability [10], as well as critical RCE vulnerabilities in the web
Uls of VMWare and F5 products [15, 27].

One of the strategies used by developers and system administra-
tors to identify and correct vulnerabilities before they are abused by
attackers is the use of Web Vulnerability Scanners (WVSs). WVSs
are automated “point-and-click” tools that scan web applications
for known and unknown vulnerabilities such as XSS, CSRF, RCE,
and exposed private files. WVSs can be used either manually (e.g.,
as part of a penetration-testing engagement) or incorporated in
Continuous Integration/Continous Delivery (CI/CD) pipelines to
scan a web application every time developers commit new code to
their repositories [32, 34].

Unfortunately, even though WVSs are meant to be used by le-
gitimate administrators and authorized penetration testers, nothing
stops attackers from downloading an off-the-shelf WVS, pointing it
to a target of interest, and scanning that target. Most WVSs support
rate-limiting and changing the default User-agent header, which can
be readily abused by attackers to hide their identity when scanning
targets. In fact, in their recent work on characterizing the automated
browsing activity that websites observe, Li et al. reported traces of a
specific WVS scanning their deployed web applications, despite the
lack of popularity of their honeypot websites [20]. From a research
perspective, most prior work on known WVSs has evaluated the abil-
ity of these tools to identify vulnerabilities [5, 12, 23, 24, 35, 36, 39],
as opposed to trying to identify the tools themselves when they are
used for unauthorized scanning. While there exists a rich body of
research on detecting Internet bots [6, 9, 16, 18, 20, 21, 31, 37, 40, 43],
WVS behavior is significantly different from the generic bots’
activities: Bots commonly conduct crawling, indexing, or occasional

https://doi.org/10.1145/3543507.3583394
https://doi.org/10.1145/3543507.3583394

WWW 23, April 30-May 04, 2023, Austin, TX, USA

probing for specific vulnerabilities, while WVSs are designed for

the systematic evaluation or pentesting of websites against a long

list of potential vulnerabilities.

In this paper, we approach the problem of unwanted web
vulnerability scanning by compiling a list of 12 popular WVSs and
characterizing their capabilities and network-level behavior. To
this end, we develop a testbed capable of automatically launching
these scanners against our own targets while monitoring the WVSs’
network-level behavior and extracting fingerprintable attributes
using state-of-the-art browser and network-fingerprinting methods.
To understand how the traffic that WVSs generate is different from
the traffic of benign users, we conduct a separate user study with
159 users conducting typical activities on the same web applications
(e.g., reading articles and searching for content).

By contrasting these two datasets, we identify significant
differences in the type of traffic these two groups generate and
the overall network-level behaviors they exhibit. Among others,
we discover that WVSs send large numbers of requests to the
applications that they scan (up to hundreds of thousands of requests
in a single run), causing a disproportionate number of HTTP
errors while scanning (up to 98% HT TP error rate), and exhibiting
lacking/partial support of security mechanisms that are universally
present in modern web browsers (e.g., the inability to enforce CSP
policies, as well as the inappropriate loading of mixed content). We
also explore the deterministic nature of WVSs (i.e., will a given WVS
produce the same requests when scanning the same web application)
and discover the use of randomness in some of the evaluated WVSs.

Based on our observations of the differences between users and
WVSs, we propose ScannerScope, a system for detecting unwanted
web vulnerability scanning. ScannerScope is deployed at the server-
side of web applications, acting as a reverse proxy between incoming
HTTP requests and the webserver. Using supervised machine
learning, ScannerScope asynchronously classifies incoming requests
as belonging to users vs. WVSs. We demonstrate that ScannerScope
exhibits high detection accuracy (e.g., 99.30% for protecting Word-
Press applications), which it largely retains even when the protected
web application is entirely different from the web application on
which it was trained. Moreover, ScannerScope keeps its detection
accuracy even when facing unseen WVSs that were not part of its
training set. Across both scenarios, ScannerScope has near-zero
false positives (i.e., misclassifying human visitors as scanners) and
can be combined with additional server-side techniques to ensure
that both regular users, as well as benign bots, are not affected.

Finally, we demonstrate that ScannerScope incurs a negligible per-
formance overhead in deployments that already use reverse proxies
(e.g., for load-balancing purposes) and quantify how well Scanner-
Scope resists adversarial attacks aimed at confusing its classifier.
Overall, this paper makes the following contributions:

e We deploy a testbed for measuring web vulnerability scanners
(WVS) and use it to curate a wide range of fingerprints (browser,
TLS, and behavioral) from the evaluated tools.

e We characterize a total of 12 popular web vulnerability scanners
and 159 user participants, pointing out the differences in the
browsing behavior that they exhibit. Through this process, we
obtain two ground-truth datasets that can be used in a supervised
machine-learning setting to differentiate between users and
WVSs. We will be sharing these datasets with other researchers.

Li, et al.

e We propose ScannerScope, an ML-based detection system that can
detect WVSs in incoming HTTP traffic. We show that Scanner-
Scope can effectively detect unwanted scanning activity without
adding significant overhead to the web server while retaining its
robustness against attackers who attempt to spoof their identity.

2 BACKGROUND AND THREAT MODEL

Web Vulnerability Scanners (WVSs) are automated tools used to scan
web applications for common vulnerabilities. These scanners range
from simple tools that request a series of predetermined endpoints
from the scanned web application (such as directory brute-forcers),
to complicated crawling-driven tools that first map all the endpoints
of a web application before attempting a series of attack vectors
in search of SQL injections, XSS vulnerabilities, RCEs, etc. WVSs
are available as open-source tools (e.g., OWASP ZAP [29], and
Arachni [4]), commercial tools, as well as via Scanning-as-a-Service
deployments (e.g., the Tenable [2] and Acunetix [1] cloud scanners).

While the intended audience of WVSs are hired penetration testers
as well as web application administrators, these tools can be used
by attackers to scan arbitrary third-party web applications, without
their permission. In fact, Li et al.’s recent study on malicious bots [20]
reported evidence of WVS activity even on newly-created websites
with zero organic traffic. Many bug bounty programs (e.g., Trello [8],
United Airlines [38], and Piwik [33]) explicitly prohibit the use of
automated scanners against their assets, mainly due to the large
number of requests that they generate, which will be amplified when
multiple researchers try to find vulnerabilities on the same websites.

2.1 WYVS Functionality

Prior work has focused on comparing WVSs across dimensions
related to their ability to discover vulnerabilities. We focus on the
dimensions that are relevant for detecting their unwanted presence
in incoming web traffic.

e Target Dependence: Target-independent tools send the same
requests regardless of the targeted web application. These
requests are typically aimed at identifying hidden directories,
backup files, and other sensitive content that is not directly linked
from a web application. Contrastingly, target-dependent WVSs
first crawl the target web application and then launch a series
of attacks against the identified endpoints.

e Use of Browser Engine: Some WVSs send requests to their
target web applications through the use of simple HT TP libraries
(API equivalents of wget and curl). In contrast, more sophisti-
cated WVSs incorporate a full browser engine in their tool. This
can be done by proxying all requests through a real browser or by
actually embedding a headless version of a browser in their tools.

2.2 WYVS Threat Model

Our threat model targets malicious actors abusing off-the-shelf
web vulnerability scanners to scan target websites without the
permission of their owners. We anticipate that attackers can use
the full native capabilities offered to them by these tools, both
in terms of attack vectors as well as stealthiness, to find as many
vulnerabilities as possible while evading detection. Our goal is
to fingerprint the incoming requests generated by these tools,
differentiate them from the requests of regular users and benign
bots, and enable administrators to apply one or more access-control

Scan Me If You Can: Understanding and Detecting Unwanted Vulnerability Scanning

policies to the detected WVSs (e.g., blocking their IP address). Even
if a web application is secure against the types of vulnerabilities that
WVSs are likely to find, we argue that knowing that a specific host
or group of hosts are illicitly scanning a web application is of interest
to administrators because it reveals an ongoing attack that can be
countered early, before it escalates to other tools and attack vectors.

3 DATA COLLECTION

To be able to detect unwanted vulnerability-scanning activity on
a web application, we must first understand how popular WVSs
operate and analyze the type of traffic they generate. To this end, we
developed a testbed consisting of real web applications that we can
ask WVSs to scan for vulnerabilities. This testbed adopts state-of-
the-art fingerprinting and monitoring techniques to extract as much
information as possible about the connecting clients. This informa-
tion will be later compared against the traffic that real users produce
when visiting the same websites to build a supervised machine-
learning classifier for differentiating between WVSs and users.

3.1 Web Applications

To understand the extent to which a given WVS’s network activity
is coupled to the web application that it is scanning, our testbed
uses two different types of web applications. Given their popularity,
we opted to deploy recent versions of WordPress and Joomla, two
Content Management Systems that can be extensively customized
and are together estimated of powering more than 40% of online
websites [41, 42]. WordPress in particular is so popular that two
of the WVSs that we evaluate are custom-made to only attack
WordPress web applications.

3.2 Fingerprinting Setup

We follow the fingerprinting regime recently proposed by Li et
al. [20] to build our fingerprinting capabilities. We augment the de-
ployed web applications with traditional JavaScript-based browser
fingerprinting, behavior fingerprinting, and TLS fingerprinting as
described below:

Browser fingerprinting. Our testbed first evaluates a client’s
Java-Script support by invoking standard APIs related to AJAX
requests and DOM manipulation. For example, the testbed uses
JavaScript to create a new tag on the client-side and append
that image to the DOM. If the client requests that image, this
indicates basic support of JavaScript. Similarly we fingerprint
the client’s support for security headers such as CSP and framing
policies by adding additional resources in the webpage.

Following Li et al’s intuition, a lack of basic security-mechanism
support can reveal the presence of a non-standard client (i.e., a
WVS), regardless of that client’s identity claims. Lastly, we check for
the presence of ad-blockers by loading resources that are commonly
attributed to advertisement libraries and checking whether the
client browser loads and executes such scripts.

Behavioral fingerprinting. Behavioral-fingerprinting techniques
analyze a client’s browsing patterns such as visited pages, injected
parameters, and payloads, server-response codes, and caching. Our
testbed records the response code for each request so that we can an-
alyze the response-code distribution (i.e., ratio of successful vs. error
HTTP codes) as part of our WVS analysis. Related to the aforemen-
tioned fingerprinting of security mechanisms, we also test to what
extent WVSs load mixed resources (e.g., loading a remote JavaScript

WWW 23, April 30-May 04, 2023, Austin, TX, USA

file over HTTP, in an otherwise HTTPS-protected page), in search
of behavior divergence compared to what all modern browsers do.
TLS fingerprinting. TLS fingerprinting extracts information from
the TLSClient Hellomessage thata client sends to the server when
attempting to establish an encrypted communication channel. Prior
work has shown that this information canreveal the true nature of the
connecting client since modern browsers present different support
for TLS versions and ciphersuites, compared to command-line clients
and HTTP libraries [19, 20]. We incorporate the FingerprinTLS
library [7] in our system to passively collect TLS fingerprints.

3.3 Scanners Data Collection

To obtain a comprehensive view of Web Vulnerability Scanners
(WVSs), we selected the top 10 open source WVSs from the list of
top OWASP pentesting tools [28, 30], which included all scanners
that are non-commercial and publicly available. We augment this
list with two academic scanners: Black Widow [14] and Enemy of
the State [11], resulting in 12 scanners. Though we do not expect
academic scanners to be used for attacks in the wild, we opted to
include two characteristic versions to evaluate the extent to which
these scanners behave differently compared to popular WVSs.
Table 1 lists the 12 scanners that we analyze in this study along with
their corresponding version information. For each tool, we used
the latest version available at the time of our analysis. We analyze
the scanners and report their characteristics such as the number of
requests they send, the crawling behavior, and their browser engine.

Overall, we run each scanner for 10 rounds, against both our
WordPress and Joomla web applications. This results in a total of 240
experiment runs (12 WVSsx2 webappsx 10 rounds) for which our
testbed collected extensive logs of the requests that WVSs sent, the
responses these requests elicited, and the fingerprintable attributes
of the WVSs during their runs.

3.4 User Data Collection

To identify how the traffic that real users produce when they
interact with a web application is different from that of WVSs,
we conducted an IRB-approved user study by hiring 159 online
participants using the Amazon Mechanical Turk platform [25]. A
summary of demographic information is included in Table 5 in the
Appendix. Overall, we were able to collect user-browsing data for
numerous different browsers and underlying platforms which we
contrast against browsing data generated by WVSs.

4 SCANNER BEHAVIOR

In this section, we provide an in-depth analysis of web vulnerability
scanners (WVS) through the lens of our collected dataset. Our aim
is to understand how these scanners behave, how they are different
from each other, and how their traffic can be differentiated from that
of regular users browsing the same web applications. Along with the
discovered statistics, we also present a series of observations which
we later capitalize on, for our supervised ML detection of WVSs.

O1. The majority of scanners send a large number of requests,
which can negatively affect the performance of web servers.

While our testbed websites contain fewer than 20 pages and less
than 100 resources (e.g., JavaScript and CSS files), we observe that the

WWW 23, April 30-May 04, 2023, Austin, TX, USA

Li, et al.

Table 1: List of web vulnerability scanner tools. Results represent the median of 10 runs.

Scanner Name Version Number of Requests Site-Specific Deterministic Invalid URL Browser-Based
(Median) Ratio

WPScan(kali) 3.8.13 168 v v 86.25% X
Arachni 1.5.1 220,822.5 v v 13.98% v (Optional)
OWASP Zap D-2020-12-21 128,346 v v 4.90% v
WMap 1.5.1 29,183 X v 98.67% X
Wapiti 3.0.3 50,970.5 v v 5.06% X
Nikto 2.1.6 8,651.5 X 4 91.09% X
W3af 1.6.45 4,698 v X 33.41% X
Skipfish (kali) 2.10b 11,464 v/ X 43.50% X
Commix 2.9-stable 18,518 X 4 0.00% X
Google Tsunami 0.0.5 1,182.5 v X 4.96% X
Black Widow N/A 135,042.5 v X 0.00% v
Enemy of the State N/A 32 X 4 0.00% X

median number of requests per run is more than 1,000 requests for 10
out of 12 scanners. Looking at the scanners with the highest number
of requests, we observe Arachni, Black Widow, and the OWASP
ZAP sending out 220,823, 135,043, and 128,346 requests respectively.
Contrastingly, some scanners exhibit a small footprint. Namely,
WPScan only sent 168 requests per run. WPScan is specific to Word-
Press platforms and is equipped with a list of vulnerable plugins and
endpoints. Unlike the application-agnostic scanners in our dataset,
WPScan does not inject its payloads in the identified fields and inputs
of every page, and as a result, we observe fewer requests even on
WordPress websites, compared to other WVSs. Enemy of the State
(one of the two academic WVSs in our dataset) terminates early on in
the scan process. This is mostlikely due to the tool nothaving been up-
dated since its release. Nevertheless, we kept this tool in our dataset
as its other features can still be used in our classifier for detection.

02. Some scanners have distinct exploration and attack phases
which change based on the content of target web applications.

Scanners with a distinct exploration phase initially crawl and map
the structure of the target by issuing and modifying requests based
on the server’s response. Not all scanners, however, perform these
two steps sequentially. Scanners like Arachni send their payloads
as soon as they discover new entry points in the application.

Moreover, we observed that some scanners incorporate a hard-
coded list of endpoints that they request while others dynamically
mapped the web applications. To capture this effect into our data
models, we categorize the browsing behavior of scanners into two
major groups: Site-specific and Deterministic. Table 1 shows how
different WVSs behave across these two categories.

The Site-specific attribute describes whether the WVS behaves
differently based on the target web application. We compare the scan
results of WordPress and Joomla for each scanner, and if we observe
over 70% difference in the request URIs, we mark that scanner as
site-specific. We chose the 70% threshold empirically to account for
hybrid tools that send requests towards hardcoded endpoints as well
as endpoints they discovered during their mapping phase. These
hardcoded endpoints correspond to checks for sensitive resources
including configuration files and common backup filenames.

On the other hand, WVSs that are not site-specific send out the
same request URIs regardless of the target web application. Scanners
like WMap and Nikto fall into this category.

03. Scanners may only use a subset of their attack vectors during
each execution.

We analyzed the scanner’s behavior over multiple runs on
the same web application and identified that certain scanners
have randomness built into their scans, specifically in the list and
order of the scanned files. In Table 1, we marked each scanner as
deterministic if more than 70% of the requested files across multiple
runs on the same web application are similar.

Unexpectedly, we discovered that a third of the scanners in our
dataset (W3af, Skipfish, Google Tsunami, and Black Widow) show
non-deterministic behavior. For instance, W3af only incorporates
a subset of its payloads in every scan. Similarly, Black Widow has
built-in randomization mechanisms to choose the next payload.

Even among deterministic scanners such as Nikto which scans for
the same URLSs over subsequent scans, we observe the randomization
of a subset (< 25%) of its payloads.

Overall, we consider the use of randomization by WVSs as less
than ideal for vulnerability-detection purposes. In practice, the
use of randomization means that any given vulnerability may
remain undetected for long periods of time if it happens to not be
selected in any given run. Particularly in the context of Continuous
Integration/Continuous Delivery (CI/CD) pipelines, a vulnerability
discovered by a non-deterministic scanner may be wrongly
associated with the last commit that triggered the scan, sending
developers down the wrong path for detecting it and fixing it.

O4. Scanners focus on different endpoints and produce a large
number of invalid requests compared to human visitors.

This behavior is rooted in the design principles of web vulner-
ability scanners. We analyzed the scanned URIs by extracting the
top terms using the TF-IDF algorithm. The results indicate that
scanners place more emphasis on resources within the main pages
of web applications, such as JavaScript resources and links.

We looked at the HTTP response-code distribution for each
scanner, focusing on those associated with invalid URLs. We define
the invalid URL ratio as the ratio of requests with an HTTP 404
response code compared to the total number of requests. Since we
did not deliberately include any links to non-existing resources on
our testbed websites, we do not expect normal browsing to lead to

Scan Me If You Can: Understanding and Detecting Unwanted Vulnerability Scanning

Table 2: Request-based features. For HTTP-header-names and TLS
fingerprints, we incorporate the information about the order of
elements in the form of bigrams and trigrams.

Feature name Type N-grams
URI-Word URI Unigram
HTTP-header-name Headers Unigram,Bigram
HTTP-header-value Headers Unigram
TLSFP TLS fingerprints Unigram,Bigram, Trigram

any significant number of invalid requests. For non-site-specific
scanners that incorporate a static list of potentially vulnerable
or sensitive resources, we observe a large ratio of requests for
non-existing files. This is reflected in the ratio of HTTP 404 errors
produced for each scan (shown in Table 1). For example, A larger por-
tion of requests from Skipfish target potentially sensitive files with
extensions such as.bak, .bat, .orig, .ver. Nikto scans include keywords
such as “passwd”, “exe”, “dir”, and “formmail”. Those keywords are
part of scanned URLs, which point to sensitive files that may contain
passwords and executable files. Overall, we can clearly attribute
a higher invalid URL ratio to the probing activities of scanners.

O5. Browser-based scanners have similar capabilities as human
visitors.

One category of features that is of interest for detection is the
various types of browser fingerprints that a server can extract from
a connecting client. Some scanners incorporate an HTTP library
to generate their HTTP requests while others use instrumented
browsers. We refer to the scanners that use instrumented browsers
as browser-based in Table 1. Browser-based scanners are specifically
harder to detect using traditional browser-fingerprinting techniques.
The JavaScript capabilities and support for security mechanisms
of these scanners will be similar (if not identical) to the capabilities
exhibited by regular users. For example, the “Black Widow” WVS
fully honors our CSP rules only requests CSS and images that are
allowed by these rules.

Overall, we observe that there exist a number of dimensions
where different WVSs exhibit different behaviors, not just from
regular users, but also from each other. In the next section, we
describe how we can capture these differences in features used to
detect the presence of unwanted WVSs.

5 SYSTEM DESIGN OF SCANNERSCOPE

Having observed that users and WVSs exhibit different behaviors
across our testbed, we incorporate these differences into an auto-
mated detection system. In this section, we introduce ScannerScope,
a web-application agnostic, server-side tool for differentiating
between WVSs and benign users.

A high-level view of ScannerScope is shown in Figure 1. Scanner-
Scope is placed between the HTTP traffic reaching the server and
the webserver(s) receiving and processing that traffic. ScannerScope
routes client requests through its reverse proxy and relays them
to the destination web server. Upon receiving responses from the
webserver, ScannerScope then passes the responses back to clients.
ScannerScope transparently augments the outgoing response pages
with different fingerprinting modules and extracts fingerprints
and statistical information from the requests. This information
is then provided to the classifier module over an asynchronous

WWW 23, April 30-May 04, 2023, Austin, TX, USA

message queue, decoupling the performance of ScannerScope from
the overall performance of the protected web application.

5.1 Proxy Setup

The main component of ScannerScope is a reverse proxy. Scan-
nerScope’s reverse-proxy architecture allows it to intercept and
analyze the incoming traffic regardless of the web applications being
used, as well as stop malicious incoming traffic from ever reaching
the web servers. Our reverse proxy consists of the following
subcomponents: i) Fingerprinting modules, ii) Asynchronous Queue,
iii) WVS classifier, and iv) Access-control module. ScannerScope
automatically collects the browser and network-level fingerprints
by appending fingerprinting resources described in Section 3.2
(e.g., JavaScript fingerprints, CSP support, caching behavior, and
TLS fingerprints) to the outgoing HTML pages and headers. When
requests arrive, ScannerScope immediately routes them to the
webserver. In parallel, it asynchronously sends a copy of each
incoming request to the feature-extraction module; Based on the
verdicts of our classifier, we can decide to block the requests from
scanners using ScannerScope’s access-control module.

5.2 Data Modeling

In this section we discuss the details of data modeling (such as, the
process of vectorizing features) based on our prior observations,
and identify the best performing machine learning models for use
in ScannerScope.

5.2.1 Feature Extraction. Based on our observations in Section 4,
we extract features from request header and body, and categorize
them in to Request-based and Capability-based features.

For the request-based features, we choose the request URI,
HTTP headers and TLS fingerprints based on observations O1-O4.
For request URIs, we only retain their values, while for HTTP
headers and TLS fingerprints, we retain the bigram and trigram
relationships to model their order. We use a TF-IDF vectorizer to
extract distinctive terms from the request file paths, the request
parameters, HTTP header names, and a subset of HTTP header
values. To rule out the randomness (O3) from dynamic HTTP
headers and avoid spoofing, we ignore the value of dynamic headers
such as Host, Referer, User-Agent and Cookies. Note that 9/10
of the non-academic WVSs we evaluated in this paper, support the
spoofing of User-Agent headers. We incorporate the information
about the order of HTTP headers and TLS parameters by using
bigrams and trigrams in our vectorization as listed in Table 2.

Capability Features describe the browsing environment of clients.
Based on O5, we look at features extracted from our fingerprinting
scripts which report on a client’s support of JavaScript, CSP,
Framing, mixed-content, and even the presence of ad-blockers. We
refer to this set of features as Capability-based features. Unlike the
request-based features, these features are tracked over a browsing
session across multiple requests. As a result, ScannerScope’s
accuracy directly benefits from larger number of requests. For
example, to determine whether the client supports CSP, we have
to wait for the client to have a chance to load the resources on the
web pages before we observe potential CSP violations.

5.2.2 Selection of Machine Learning Model. Our initial dataset
contains a total of 240 runs from WVSs, and 159 browsing sessions
from human visitors. We split 80% of the dataset for training, and

WWW 23, April 30-May 04, 2023, Austin, TX, USA

Li, et al.

Web Server

@ Benign ‘
Bots Detection

< v Verdict
K reguir M <):
Users

Access Control

Clients ScannerScope
Web D
%ﬁ(Vulnerability > 'y Fingerprinting
Scanners ()] Resources
(%)

@ I Queue >

* Log Collection
* Queueing Service

Asynchronous

W &2

Scanner
Classification

Model

Figure 1: Architecture of ScannerScope. ScannerScope passes incoming HTTP requests to the webserver while making a copy of each request which
is placed on its asynchronous queue to be consumed by the classifier. HTTP responses containing HTML content are modified by ScannerScope

to include fingerprinting code before returning to clients.

Table 3: Capability-based features. Each feature category is imple-
mented through certain number of tests reported under “Test #” column.

Category Test# Explanation
Does the client load our JavaScript Library?
2-4 Does client execute JavaScript for loading
JavaScript images/performing AJAX requests?
5 Does the client send JavaScript-computed
fingerprints?
6-7 Does the client load CSP-allowed
resources?
CSP Support 8-11 Does the client load CSP-forbidden
resources?
12 Does the client send a CSP report

when the page has violated CSP rules?

Framing Options 13-17 Does the client load iFrames and

Support resources within that frame?
Mixed Content 18-19 Does the client load HTTP content
Rules under HTTPS context?

Browser Extension 20-21 I the client running an ad-blocker?

use the remaining 20% for testing. To capture the values of all
features, we process the requests in batches, which we refer to as the
Window of requests. We discuss the process to identify the optimal
window-size in more detail in Section 6.1.1. We use the window-size
of 15 for our experiments which provides us with 6,351 training
and 1,572 test samples. Each sample in our dataset is composed of
feature vectors for a batch of requests including the fingerprints
and other request characteristics.

After extracting the aforementioned features, we evaluated mul-
tiple machine learning models such as decision trees, K-Nearest
Neighbors (KNN), Support Vector Machine (SVM) and a gradient
boosting model (LightGBM). After training and testing the different
classifiers, we experimentally identified that LightGBM results in the
best performance and accuracy numbers among the evaluated mod-
els. As such, ScannerScope incorporates LightGBM in its classifier.

6 RESULTS

In this section, we report the accuracy of our ScannerScope’s clas-
sification module in detecting the traffic from the web vulnerability
scanners. We begin by evaluating the effect of batching requests in
ScannerScope’ performance, and then evaluate ScannerScope in in-
creasingly challenging settings. Lastly, we evaluate ScannerScope’s
performance overhead on the protected web applications.

6.1 Classifier Performance

The goal of ScannerScope is to differentiate between WVS and non-
WVS traffic (i.e., human visitors as well as benign bot traffic). Our

Table 4: Performance of classifier under various training and testing
conditions. For the first three rows, the Model is represented by the
Training-Testing dataset. ScannerScope generalizes well for unseen
scanners while maintaining high accuracy.

Model

Accuracy Precision Recall F1-score

WordPress-WordPress 99.30% 97.79% 99.58% 98.66%
Joomla-Joomla 99.22% 99.17% 99.14% 99.15%
WordPress-Joomla 91.44% 92.52% 91.44% 91.39%
1 Unseen Scanner 98.27% 96.71% 98.53% 97.43%
4 Unseen Scanners 96.20% 93.65% 97.13% 95.19%
6 Unseen Scanners 91.26% 85.50% 94.38% 87.66%

classifier operates on batches of requests, as opposed to individual
ones. This batching allows us to determine the value of various finger-
printable properties of a client (such as its support for CSP) and not
prematurely ask for a classification decision with incomplete data.
As a result, before analyzing the accuracy of ScannerScope,
we need to identify the optimal window size, i.e., the number of
consecutive requests from each client that need to be batched
together before ScannerScope can provide a high-confidence verdict.

6.1.1 Finding the Optimal Window-size. In order to determine
the optimal window size for our classifier, we plot the model
performance over a range of sample window sizes depicted in
Figure 2. The window size has a unique effect on different features.
Most notably, the URL features and Capabilities benefit the most
from larger window sizes. In our setup, most capabilities are verified
across multiple requests and by observing the presence or absence
of requests towards certain resources (e.g., loading images and
iframes). Thus, these features benefit the most from larger window
sizes, increasing the window size from one request to 20 requests
boosts the accuracy of this feature from 50% to 90%.

Conversely, we observe that some features do not necessarily
benefit from larger window sizes. For instance, looking at the HTTP
headers in Figure 2 for WordPress-Joomla (Red line), the accuracy
slightly drops as we increase the window size. We attribute this
effect to the over-fitting of our classifier when trained on larger
windows. Therefore, we choose 15 requests as the window size for
our model to detect WVS. Combining multiple features increases the
overall accuracy across all window sizes, and a window size between
15 to 20 requests achieves the best accuracy for all testing scenarios.

Scan Me If You Can: Understanding and Detecting Unwanted Vulnerability Scanning

WWW 23, April 30-May 04, 2023, Austin, TX, USA

10 URL 10 HTTP Headers 10 Capability
S T A e e
g g T~ S N o .
091 e O SEGRIEDE NI 00 os ISR IS

i
i

Il WordPress-WordPress
06 I joomla-Joomla 06
I WordPress-Joomla

Accuracy (%)

Il WordPress-WordPress
I joomla-Joomla 06
Bl WordPress-Joomla

o7 y Il WordPress-WordPress
I joomla-Joomla
m WordPress-Joomla

4 10 a0 50 0

20 30
Similarity

20 30
TLS Fingerprint

a0 50 0 10 a0 50

20 30
All features

P I e
09] PPN R T VA
¥ YY) NaY v

VN v

Il WordPress-WordPress
== joomla-joomla 06
B WordPress-Joomla

Accuracy (%)

B

091 P e A Va v 09

Il WordPress-WordPress
== joomla-joomla 06
B WordPress-Joomla

————— T —

W WordPress-WordPress
== joomla-joomla
= WordPress-joomla

4 10 20 30 40 50 0 10

30 40 50 0 10 20 30 40 50

Window sizes
Figure 2: Accuracy of the classifier based on feature groups when trained on various window sizes. The blue line represents WordPress-WordPress
test accuracy, the black line represents Joomla-Joomla test accuracy, and the red line represents WordPress-Joomla cross-test accuracy.

6.1.2 Accuracy and Precision Results. Table 4 reports the perfor-
mance numbers of trained models under various combinations of
training and test data. First, we report the performance numbers
when we train and test the classifier on the same web application.
Under this setup, ScannerScope is able to achieve a high accuracy
across both of our testbed web applications (99.30% on WordPress
and 99.22% on Joomla).

6.1.3 Time to Detect a WVS. ScannerScope performs its classifi-
cation for each incoming window of requests. As a result, the time
it requires to flag a WVS is 15 requests in our current setup. Given
that a typical WVS issues thousands to hundreds of thousands
of requests (See Table 1), this means that ScannerScope can block
WVSs traffic long before they can report any meaningful findings.

To further put this number into perspective, we crawled the
top 1,000 domains from the Majestic Million ranking [22], and
measured the number of requests required to load the homepage
of each website on the list. On average, loading each web page
results in 132 requests. Given that ScannerScope flags WVS with
high accuracy in 15 requests, it will block scanners nine times faster
than the time it takes for a normal browser to load the home page
of a popular website (i.e., typically, in less than a second). Moreover,
the computational overhead of ScannerScope adds as little as a 2%
performance overhead to the web server; the detailed performance
analysis is available in the Appendix.

6.1.4 Feature Group Importance. In this section, we first evaluate
the prediction power of individual feature groups and then
investigate the importance of individual features. To this end, we
train our classifier on each feature group separately. Figure 3 shows
the accuracy of ScannerScope when trained on individual feature
groups. One can observe that most feature groups can individually
provide an accuracy of over 80%. For instance, training a classifier
on URLs only leads to 92% accuracy, and combining URLs with
HTTP headers improves the accuracy to 98%. We observe a similar
trend when combining Capability and Similarity-based features.
Overall, we observe that most of the feature groups provide
exhibit strong predictive powers, particularly when combined
together. Although a subset of features may already provide high
accuracy, we argue that training ScannerScope on a wide range
of features allows it to better deal with unseen scanners as well as
potential evasion attempts by attackers. We evaluate a sophisticated
future attacker’s ability to evade ScannerScope in Appendix C.
Next, we evaluate the importance of individual features. Our
model contains 26,494 features, with the majority of them being

vectorized terms extracted by the TF-IDF algorithm. Our features
are made up of 845 HTTP header terms, 25,445 URL terms, 21
capability-based, and 8 similarity-based features. Figure 4 visualizes
the importance of features with an impact factor of greater than five.
Interestingly, a small subset of terms extracted from the URLs and
request parameters have a high impact on the classification results.
Overall, vectorized URLs and HT TP headers are among the most
impactful features in ScannerScope’s model. Nevertheless, capability
and similarity-based features also provide significant support.

6.1.5 Dealing with False Positives. In the deployment setting
of ScannerScope, false positives are important since they can
potentially prevent human users from reaching the protected web
applications. In our setup, we reported the accuracy and precision
for a one-time detection decision; in actual deployment, the model
can be configured to detect multiple times and provide a confidence
score to accommodate various scenarios. As mentioned earlier, apart
from reconfiguring the model, the access-control module can also be
configured to block the IP address for a certain amount of time or in-
corporate CAPTCHAS to reduce the probability of blocking organic
web users. Due to space constraints, the detailed analysis of false
positives for bots and human requests is available in Appendix B.

6.2 Classifier Robustness against
New Web applications and Unseen WVS

New Web Applications. We measure the robustness of the
classifier when trained on WordPress and tested on Joomla. This
setup models the generalizability of our classifier and to what extent
ScannerScope needs to be trained on the same web application as
the one tasked to protect. For certain features such as browser fin-
gerprints and capabilities, the choice of the web application will not
affect ScannerScope’s accuracy. Conversely, for features that depend
on the structure of the web applications (i.e., URIs and Similarity), a
change in the structure of the web application may affect the results.
As such, we devise this setup to measure the effect of transferring the
trained model to other web applications. As listed on the third row of
Table 4, training ScannerScope on WordPress and testing on Joomla
yields a 91.44% accuracy. This level of accuracy is likely too low to
be coupled with the automated blocklisting of clients but could be
coupled with less intrusive countermeasures (such as CAPTCHAs)
if retraining ScannerScope is not an option in a given deployment.

Unseen WVS. We also measure the performance of ScannerScope’s
classifier in detecting unseen scanners (shown in the last three rows
of Table 4). To this end, we started removing the scanners from our

WWW 23, April 30-May 04, 2023, Austin, TX, USA

URL

0.6

Accuracy (%)
HTTP Headers
Capability
Similarity

TLS Fingerprint
All features

0.2 WordPress-WordPress.
Joomla-Joomla
WordPress-joomla

0.0

Feature groups
Figure 3: Accuracy of feature groups when training the classifier only

on one or a subset of feature groups at a time.
training set, gradually increasing the number of “unseen” scanners.

By removing each scanner from the training set, retraining, and
testing with the omitted scanner, ScannerScope achieves an average
accuracy of 98.27% for this leave-one-out setup. Even if we remove
33% and 50% of all scanners from the training dataset, our classifier
still retains a high accuracy of 96.20% and 91.26% respectively.
This high accuracy demonstrates the strength of our classifier
in extracting generic patterns from the scanners which can be
generalized to unseen scanners. The evaluation of ScannerScope’s
ability to resist adversarial attacks is available in Appendix C.

7 RELATED WORK

Even though web vulnerability scanners have been evaluated
extensively in related work, the majority of that work is focused
on whether WVSs can identify known vulnerabilities and how one
could increase their crawling coverage in order to be able to identify
as many vulnerabilities as possible. To the best of our knowledge,
this paper is the first one that seeks to evaluate WVSs, not on their
vulnerability-detection performance, but on the type of HTTP
traffic that they generate and to what extent they are fingerprintable
and differentiable from regular users. We briefly review the related
work on the performance of WVSs as well as the most relevant work
from the closely-related field of bot detection.

Evaluating WVS Performance

Prior work has evaluated the effectiveness of web vulnerability scan-
ners through different metrics, including their ability to crawl the
deeper states of web applications and to what extent scanners can
identify vulnerabilities on known vulnerable web applications [5, 12,
23, 24, 35, 36, 39]. In general, these works reported that even though
there clearly are differences between different tools in terms of their
abilities to discover vulnerabilities, no tool is always the best across
all possible deployments. Moreover, even the best-performing WVSs
have difficulty navigating web applications that make heavy use of
JavaScript, such as in modern single-page applications.

In contrast with prior work, this paper’s focus is not whether
WVSs can discover complicated vulnerabilities but whether they
can be detected by web applications in scenarios where attackers
deploy WVSs against sites without their permission.

Detecting Bots and WVSs

In recent years, there has been an increased interest in web-bot
detection, which is powered by the continuous migration of
software to the web and the ever-increasing attacks facilitated by
malicious web bots, including credential stuffing, content scraping,
and vulnerability exploitation.

Prior work has proposed numerous approaches for detecting web
bots using fingerprinting techniques [6, 9, 16], deception [20, 31, 40],

Li, et al.

300 HTTP Header
TLSFP

. URL

I Capability
Similarity

Feature Importance
=
w
o

. Lt lit.

0 10 20 30 40 50 60 70
Features

Figure 4: Model Feature Importance for WordPress-WordPress test. Fig-
ure shows the importance of individual features from various feature
groups for importance value > 5. The X-axis represents individual fea-
tures, Y-axis represents the feature importance value from the model.

and supervised as well as unsupervised machine learning techniques
based on the frequency and type of web requests [17, 18, 21, 37, 43].
While the detection component of ScannerScope shares some sim-
ilarities with prior bot-detection methods, our starting point is that
of known web vulnerability scanners (as opposed to unknown bots
behaving maliciously) that we first analyze in order to understand
their behavior at a network level. In this way, ScannerScope benefits
from accurate ground truth (compared to the best-effort labeling of
available HTTP traffic followed by prior work) and is not affected by
low-and-slow scanners or scanners with spoofed identities. More-
over, because of our user study (where we collected HTTP traces
from real users interacting with the protected web applications) we
can accurately measure ScannerScope’s performance and its ability
to avoid false positives (i.e., flagging users as WVSs).

8 CONCLUSION

In this paper, we systematically explored the behavior and capabil-
ities of web vulnerability scanners (WVSs). We developed a testbed
that can automatically launch WVSs and collect their behavior and
network-level fingerprints. Using this testbed, we identified WVS dif-
ferences regarding a tool’s browsing engine, whether its scans are de-
terministic, and its distribution of HT TP requests that result in errors.

To understand how the traffic that a typical WVS generates when
scanning a web application is different from that of regular users in-
teracting with the same web application, we conducted a user study
with 159 participants. By comparing the two datasets, we observed
large differences that could be capitalized for differentiating between
the two populations. To that end, we proposed ScannerScope, a
server-side, application-agnostic tool that can identify unwanted
WVS in incoming traffic and apply one or more access-control
policies against them. We showed that ScannerScope exhibits high
detection accuracy (over 99%), which it mostly retains even in
less-than-favorable deployments. Moreover, ScannerScope has the
ability to resist future attacker evasions without incurring a notice-
able performance overhead on the web applications that it protects
and with near-zero false positives on human-visitor traffic samples.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research (ONR)
under grant N00014-20-1-2720 as well as by the National Science
Foundation (NSF) under grants CNS-1813974, CNS-2126654, and
CNS-2211575.

Availability: To facilitate and advance research on the topic
of scanner detection, we make our datasets available to other
researchers at https://scan-me-if-you-can.github.io/.

https://scan-me-if-you-can.github.io/

Scan Me If You Can: Understanding and Detecting Unwanted Vulnerability Scanning

REFERENCES

[1] 2022. Acunetix online scanner. https://www.acunetix.com/online-vulnerability-
scanner/.

] 2022. Tenable cloud web scanner. https://www.tenable.com/products/tenable-io.
[3] apachebench 2022. AB - Apache HTTP server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/ab.html.

[4] arachni 2022. Arachni Web Application Security Scanner Framework.
https://www.arachni-scanner.com/.

[5] Andrew Austin and Laurie Williams. 2011. One technique is not enough:
A comparison of vulnerability discovery techniques. In 2011 International
Symposium on Empirical Software Engineering and Measurement.

[6] Babak Amin Azad, OleksiiStarov, Pierre Laperdrix, and Nick Nikiforakis. 2020. Web
runner 2049: Evaluating third-party anti-bot services. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer.

[7] Lee Brotherston. 2022. TLS Fingerprinting library. https://github.com/

LeeBrotherston/tls-fingerprinting. https://github.com/LeeBrotherston/tls-

fingerprinting

] BugCrowd. 2022. Trello bug bounty program. https://bugcrowd.com/trello.

[9] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. 2016.
Picasso: Lightweight device class fingerprinting for web clients. In Proceedings
of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices.

[10] Cybersecurity and Infrastructure Security Agency. 2021. Apache Log4j Vulnerabil-
ity Guidance. https://www.cisa.gov/uscert/apache-log4j- vulnerability- guidance.

[11] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. 2012.
Enemy of the state: A state-aware black-box web vulnerability scanner. In 21st
{USENIX} Security Symposium ({USENIX} Security 2012).

[12] Adam Doupé, Marco Cova, and Giovanni Vigna. 2010. Why Johnny can’t pentest:

An analysis of black-box web vulnerability scanners. In International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer.

Peter Eckersley. 2010. How unique is your web browser?. In International

Symposium on Privacy Enhancing Technologies Symposium. Springer.

Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black

Widow: Blackbox Data-driven Web Scanning. IEEE Symposium on Security and

Privacy (2021).

Alicia Hope. 2021. Massive Cyber Attacks Target F5 BIG-IP Critical Vulnera-

bilities After Firm Releases Updates. https://www.cpomagazine.com/cyber-

security/massive-cyber-attacks-target-f5-big-ip-critical-vulnerabilities-after-
firm-releases-updates/.

[16] Umar Igbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the

fingerprinters: Learning to detect browser fingerprinting behaviors. In 2021 IEEE

Symposium on Security and Privacy.

Gregoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2012.

PUBCRAWL: Protecting Users and Businesses from CRAWLers. In 21st USENIX

Security Symposium (USENIX Security 12). USENIX Association, Bellevue, WA,

507-522. https://www.usenix.org/conference/usenixsecurity12/technical-

sessions/presentation/jacob

Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal, Gang Wang,

and Bimal Viswanath. 2020. Throwing darts in the dark? detecting bots with

limited data using neural data augmentation. In 2020 IEEE Symposium on Security
and Privacy.

Brian Kondracki, Babak Amin Azad, Oleksii Starov, and Nick Nikiforakis. 2021.

Catching Transparent Phish: Analyzing and Detecting MITM Phishing Toolkits. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security.

[20] Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. 2021. Good
bot, bad bot: Characterizing automated browsing activity. In 2021 IEEE symposium
on security and privacy.

[21] Anélia G Lourengo and Orlando O Belo. 2006. Catching web crawlers in the act.
In Proceedings of the 6th international Conference on Web Engineering.

[22] majestic 2022. Majestic Million. https://majestic.com/reports/majestic-million.

[23] Yuma Makino and Vitaly Klyuev. 2015. Evaluation of web vulnerability scanners.
In 2015 IEEE 8th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS).

[24] Balume Mburano and Weisheng Si. 2018. Evaluation of web vulnerability scanners
based on owasp benchmark. In 2018 26th International Conference on Systems
Engineering (ICSEng). IEEE.

[25] mturk 2022. Amazon Mechanical Turk. https://www.mturk.com/.

[26] NIST. 2021. CVSS Severity Distribution Over Time. https://nvd.nist.gov/general/

visualizations/vulnerability-visualizations/cvss- severity-distribution-over-

time.

Charlie Osborne. 2021. Critical remote code execution flaw in thousands

of VMWare vCenter servers remains unpatched. https://www.zdnet.com/

article/critical-remote- code- execution-flaw-in-thousands- of-vmware-vcenter-
servers-remains-unpatched/.

owasp 2022. Free for Open Source Application Security Tools. https://owasp.org/

www-community/Free_for_Open_Source_Application_Security_Tools.
[29] owasp 2022. OWASP Zed Attack Proxy (ZAP). https://owasp.org/www-project-

zap/.

=
&

[14

[15

=
=

(18

[19

[27

[28

WWW 23, April 30-May 04, 2023, Austin, TX, USA

[30

owasp 2022. WSTG - v4.1, Testing Tools Resource. https://owasp.org/www-
project-web-security-testing-guide/v41/6- Appendix/A-Testing_Tools_
Resource.

KyoungSoo Park, Vivek S Pai, Kang-Won Lee, and Seraphin B Calo. 2006. Securing
Web Service by Automatic Robot Detection.. In USENIX Annual Technical
Conference, General Track.

Davor Petreski. 2019. Integrating Web Vulnerability Scanners in Continuous
Integration: DAST for CI/CD. https://blog.probely.com/integrating-web-
vulnerability- scanners- in- continuous- integration- dast-for- ci-cd-7637eaff26bd.
Piwik. 2022. Piwik Pro bug bounty program. https://piwik.pro/security-bug-
bounty-programat-piwik-pro/.

PortSwigger. 2019. CI/CD security testing. https://portswigger.net/developers/ci-
cd-security.

Sugandh Shah and Babu M Mehtre. 2015. An overview of vulnerability assessment
and penetration testing techniques. Journal of Computer Virology and Hacking
Techniques (2015).

Larry Suto. 2010. Analyzing the accuracy and time costs of web application
security scanners. San Francisco, February (2010).

Pang-Ning Tan and Vipin Kumar. 2004. Discovery of web robot sessions based
on their navigational patterns. In Intelligent Technologies for Information Analysis.
Springer.

UnitedAirlines. 2022. United Airlines bug bounty program. https:
//www.united.com/ual/en/us/fly/contact/vdppolicy html.

[39] Tom Van Goethem, Frank Piessens, Wouter Joosen, and Nick Nikiforakis. 2014.
Clubbing seals: Exploring the ecosystem of third-party security seals. In Proceed-
ingsofthe 2014 ACM SIGSAC Conference on Computer and Communications Security.
Nikos Virvilis, Bart Vanautgaerden, and Oscar Serrano Serrano. 2021. Changing
the game: The art of deceiving sophisticated attackers. In 2014 6th International
Conference On Cyber Conflict (CyCon 2014). IEEE.

w3techs 2022. Usage statistics and market share of Joomla. https:
//w3techs.com/technologies/details/cm-joomla.

w3techs 2022. Usage statistics and market share of WordPress.
https://w3techs.com/technologies/details/cm-wordpress.

[43] Guowu Xie, Huy Hang, and Michalis Faloutsos. 2014. Scanner hunter: Understand-
ing http scanning traffic. In Proceedings of the 9th ACM symposium on Information,
computer and communications security.

Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. 2012.
Host Fingerprinting and Tracking on the Web: Privacy and Security Implications..
In NDSS.

[31

[32

[33

&
=

[35

[36

[37

[38

=
=

[41

[42

[44

APPENDIX
A DATA COLLECTION DETAILS

Our user data collection is done through Amazon Mechanical Turk
(AMT) Platform. On AMT, we deployed two Human Interaction
Tasks (HIT) with a total of 100 participants (50 for WordPress and
50 for Joomla).

Each participant was given access to either a WordPress or a
Joomla installation (populated with mock content) and was given
a list of tasks that they had to complete. These tasks included typical
user behavior that one could expected on a Content Management
System (CMS), such as reading articles, posting comments, and
searching for specific keywords. Each action translates to tens of
client-side requests corresponding to user clicks, form submissions,
the loading of images, JavaScript, CSS, etc. The participants received
arandomized list of tasks to ensure that the order of their requests
was different so as to more faithfully mimic the actions that real
users would perform on a CMS. An example of the task lists that
were given to participants is available in Table 6.

To ensure that our webserver logs did not contain traffic from
web bots that discovered our web applications during the period
of our user study, each user was provided with a unique token
embedded in their URLs. These tokens were removed during post
processing and any requests that were lacking these tokens (i.e.
they did not originate from our HITs) were discarded. At the end of
our study, we observed that we had recorded information for more
than 100 participants since some participants started their tasks but

https://www.acunetix.com/online-vulnerability-scanner/
https://www.acunetix.com/online-vulnerability-scanner/
https://www.tenable.com/products/tenable-io
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.arachni-scanner.com/
https://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/LeeBrotherston/tls-fingerprinting
https://bugcrowd.com/trello
https://www.cisa.gov/uscert/apache-log4j-vulnerability-guidance
https://www.cpomagazine.com/cyber-security/massive-cyber-attacks-target-f5-big-ip-critical-vulnerabilities-after-firm-releases-updates/
https://www.cpomagazine.com/cyber-security/massive-cyber-attacks-target-f5-big-ip-critical-vulnerabilities-after-firm-releases-updates/
https://www.cpomagazine.com/cyber-security/massive-cyber-attacks-target-f5-big-ip-critical-vulnerabilities-after-firm-releases-updates/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jacob
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jacob
https://majestic.com/reports/majestic-million
https://www.mturk.com/
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://www.zdnet.com/article/critical-remote-code-execution-flaw-in-thousands-of-vmware-vcenter-servers-remains-unpatched/
https://www.zdnet.com/article/critical-remote-code-execution-flaw-in-thousands-of-vmware-vcenter-servers-remains-unpatched/
https://www.zdnet.com/article/critical-remote-code-execution-flaw-in-thousands-of-vmware-vcenter-servers-remains-unpatched/
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-web-security-testing-guide/v41/6-Appendix/A-Testing_Tools_Resource
https://owasp.org/www-project-web-security-testing-guide/v41/6-Appendix/A-Testing_Tools_Resource
https://owasp.org/www-project-web-security-testing-guide/v41/6-Appendix/A-Testing_Tools_Resource
https://blog.probely.com/integrating-web-vulnerability-scanners-in-continuous-integration-dast-for-ci-cd-7637eaff26bd
https://blog.probely.com/integrating-web-vulnerability-scanners-in-continuous-integration-dast-for-ci-cd-7637eaff26bd
https://piwik.pro/security-bug-bounty-programat-piwik-pro/
https://piwik.pro/security-bug-bounty-programat-piwik-pro/
https://portswigger.net/developers/ci-cd-security
https://portswigger.net/developers/ci-cd-security
https://www.united.com/ual/en/us/fly/contact/vdppolicy.html
https://www.united.com/ual/en/us/fly/contact/vdppolicy.html
https://w3techs.com/technologies/details/cm-joomla
https://w3techs.com/technologies/details/cm-joomla
https://w3techs.com/technologies/details/cm-wordpress

WWW 23, April 30-May 04, 2023, Austin, TX, USA

Table 5: Demographic data of AMT user study participants.
‘Web application User count Number of requests (median) Time to finish task (median)

WordPress 77 592 0:16:19
Joomla 82 823 0:11:56

never finished them. We opted to keep these requests since they
still account for valid user-browsing patterns (e.g., reading a single
article and then leaving the website).

In total, we recorded 159 user browsing sessions, consisting of 77
WordPress users and 82 Joomla users. On average, each participant
spent 15 minutes on our websites. WordPress users required a
median of 16 minutes to finish the assigned tasks, compared to 12
minutes for Joomla users. Each participant who completed the task
list was paid $0.5. The vast majority of users (91.10%) navigated to
our websites using a Google Chrome browser, with the remaining
users (8.9%) completing their list of tasks using Mozilla Firefox,
Microsoft Edge, Safari, and Opera. A total of 106 (66.7%) participants
used Microsoft Windows 10, while the rest of 53 (33.3%) participants
used other operating systems including Windows 8.1, Mac OS
X, and Android. All of these statistics were extracted from the
participants’ User-Agent headers (based on the findings of prior
browser-fingerprinting studies [13, 44], we assume that AMT users
are highly unlikely to be spoofing their User Agents).

B ANALYSIS
OF FALSE POSITIVES OF SCANNERSCOPE

Benign bots. Given that ScannerScope is trained on WVS vs.
human-user data, we seek to understand whether the traffic
originating from benign bots looks more like human-user traffic,
as opposed to vulnerability-scanning traffic.

To measure this, we extracted the search-engine bot traces
(including Google Bot, Bing bot, as well as other smaller benign bots)
from the Good-Bot-Bad-Bot dataset by Li et al. [20]. Given that our
classifier uses similar web applications and fingerprinting features
as those used by Li et al., we were able to successfully extract features
from their dataset (we pick one month of traffic at random from
Li et al’s dataset and focus on the requests labeled as belonging to
well-known benign bots) and pass them to ScannerScope’s classifier,
as if these requests would have arrived on our own web applications.

Out of 411 search engine bot IP addresses, ScannerScope marked
408 (99.27%) as non-scanners. Upon further analysis, we identified
that the Similarity-based features, HT TP headers, and URLs are the
determining features that tell search engine bots from vulnerability
scanners apart. More specifically, we observed that while scanners
often request invalid resources that result in HTTP 404 response
codes, search engine bots mostly request valid resources.

False positives on human requests. Although ScannerScope
exhibits high accuracy in detecting scanners, false positives are still
costly (from a business perspective) when they occur. Looking at the
test results of training on WordPress and testing WordPress, we over-
all observe 238 true negatives, 0 false positives, 11 false negative, and
1,323 true positives. Across the WordPress and Joomla experiments,
we observe a false positive rate ranging from 0% to 0.86%.

To identify possible skews in our user study dataset due to the geo-
graphic distribution of AMT workers, we verified the distribution of
locale-related HT TP headers. From this perspective, we found that all
users report “en_US” locale as their preferred language setting under

Li, et al.

“Accept-Language” HTTP header. At the same time, less than 20.1% of
users advertised multiple locales such as “en-GB” or “en-IN”. In com-
parison, in the WVS dataset, we observed that some scanners do not
send the “Accept-Language” header, while others advertised “en-US”.
As aresult, language-related HT TP header preferences due to the ge-
ographic distribution of AMT users, should not skew the fingerprints.

C ROBUSTNESS
AGAINST ADVERSARIAL ATTACKS

In Section 6.1, we demonstrated the high accuracy and precision
of ScannerScope in successfully classifying WVS traffic even in
challenging deployment scenarios, such as, when considering
unseen scanners or when the testing web application is different
from the training one. In this section, we evaluate the robustness
of our model against adversarial attacks. To that end, we simulate
sophisticated attackers who have the ability to modify and spoof
certain properties of their scanners beyond the options provided
through their configurations. These properties could be spoofed
either by changing the source code of the tools or by proxying all
connections at the client-side and rewriting fields appropriately.
While these attack scenarios are expressly outside our threat model
(Section 2), we evaluate them to understand the detection limits and
degradation behavior of ScannerScope.

In the first adversarial scenario, we consider attackers that can
modify arbitrary HT TP headers from their scans. Even though we
have already removed the easily modifiable HTTP headers from
our training data (e.g., User-agent and cookies), attackers may still
modify other headers (such as encoding, content length, etc.) which
are not particularly crucial for web servers, in an effort to evade
classifiers that are relying on them. Separate from modified HTTP
request headers, we also explore the robustness of our classifier
against attackers with modified TLS fingerprints.

For these two experiments, we gradually replace the HTTP head-
ers and TLS fields from scanners with values from human-visitor traf-
fic and measure the drop-off in the accuracy of our ScannerScope’s
classifier. We refer to the ratio of replaced fields in Figure 5 as the
“adversarial rate” which ranges from 0 to 1. The value of one denotes
that the WVS features are fully replaced with non-WVS samples.

As expected, gradually replacing the features with the opposite
class lowers the accuracy until the majority of scanner samples
are classified as non-scanners. As evident in Figure 5, replacing
merely 10% of the headers from the requests of scanners can degrade
the accuracy down to 61.86% for the classifier only trained on
HTTP headers. Similarly, replacing 20% of HTTP headers with
human-request samples results in 57.21% accuracy. These numbers
quantify the ability of attackers to bypass detection for classifiers
that only focus on a subset of easily modifiable scanner properties;
Performing the same test on TLS fingerprints yields similar results.

D PERFORMANCE
OVERHEAD IN PROXY MODE

ScannerScope is meant to be deployed inline with the web applica-
tions that it is protecting. At the same time, through the use of asyn-
chronous queues and ML classifiers, we have designed ScannerScope
to have a minimal impact on a web application’s performance. In this
section, we report on the performance overhead of ScannerScope.

Scan Me If You Can: Understanding and Detecting Unwanted Vulnerability Scanning

WWW 23, April 30-May 04, 2023, Austin, TX, USA

Table 6: Sample list of tasks given to AMT user study participants. The participants must follow the user instructions and provide the responses

to survey questions based on the content of our websites.

Question # User instructions

Applied web applications

1 Click article <article_name>, and type the last word of the first paragraph. WordPress / Joomla
2 Click the article <article_name>, and type the last word of the article. WordPress / Joomla
3 Click the article <article_name>, and type the last word in second paragraph. WordPress / Joomla
4 Click article <article_name>, and type the first word of last paragraph. WordPress / Joomla
5 Click the article <article_name>, and type the year (4-digit number) appeared in second paragraph. WordPress / Joomla
6 Click article <article_name>, How many ranks (rows) are there? WordPress / Joomla
7 Scroll down to the end of main page, then search for word <keyword>, type ‘done’ in the textbox. WordPress / Joomla
8 Scroll to article <article_name>, then click the ‘Uncategorized’ tag, type the first article name (two words). WordPress
9 Navigate to article <article_name>, then leave today’s date as a comment, type ‘done’ in the textbox. WordPress
1o Adversarial HTTP Headers
' \ is introduced and is fully operational. There, we observe an average
<" A response time of 357ms for WordPress and 389 ms for Joomla.
.06 R Asone can observe in Figure 6, the CDF of Nginx vs. ScannerScope
) ———
S . are virtually indistinguishable, with Nginx alone adding 6 — 11%
$ performance overhead over the Apache-only setup compared to the
1 = :EZ;:E . :Sers 4—9% overhead of ScannerScope. This means that ScannerScope adds
00— v v v - - negligible overhead in deployments where a reverse proxy is already
0.0 02 04 06 o8 10 ST 3
1o Adversarial TLS Fingerprint present, i.e., when load balancers and other inline devices are already
. deployed which we argue is the vast majority of the modern web.
08 \
g]\
> 06 \'\.\ E ETHICS
O | Ml N e ——
g 0.4 Our user study is approved by the Office of Research Compliance
< o of our institution under the IRB exemption category 45 CFR 46.104.
0.2 I TLS Fingerprint .
Al features d3(1)(A)
Ay 02 04 06 08 10

Adversarial rate

Figure 5: Model robustness when replacing scanner data with user data.
Using a combination of different feature groups greatly enhanced the
model’s robustness.

We use the ApacheBench [3] HTTP benchmarking tool as our
client and send 1,500 requests. We repeat the test three times and
report the response time in Figure 6 for WordPress and Joomla.
When serving WordPress and Joomla using only Apache (ie.,
without a reverse proxy), the average response time is 295ms, and
the median response time is 287ms for WordPress. Similarly, when
serving a Joomla web application, the average response time is
355ms, with a median of 350ms.

When we introduce an Nginx reverse proxy that merely relays
requests and responses between users and the web server, WordPress
tests show an average of 328ms response time, while Joomla tests
receive the response in 373ms. This slight increase in the response
time is solely due to the introduction of a reverse proxy into the setup.
Lastly, Figure 6 shows the CDF of response times when ScannerScope

Benchmark Performance (WordPress)

100

80
R 60
fa

40
o

20 —— Apache

Nginx Only
0 —— Nginx with fingerprints
0 250 500 750 1000 1250 1500 1750 2000
Benchmark Performance (Joomla)

100

80
§ 60
fa

40
o

20 —— Apache

| Nginx Only
0 —— Nginx with fingerprints

[250 500 750 1000 1250 1500 1750 2000
Response Time (ms)
Figure 6: CDF of Response times; The top figure represents WordPress
results, Bottom figure represents Joomla results. Deploying Scanner-
Scope has a negligible effect on the overall response time.

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 WVS Functionality
	2.2 WVS Threat Model

	3 Data Collection
	3.1 Web Applications
	3.2 Fingerprinting Setup
	3.3 Scanners Data Collection
	3.4 User Data Collection

	4 Scanner Behavior
	5 SYSTEM DESIGN OF ScannerScope
	5.1 Proxy Setup
	5.2 Data Modeling

	6 Results
	6.1 Classifier Performance
	6.2 Classifier Robustness against New Web applications and Unseen WVS

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Data Collection Details
	B ANALYSIS OF FALSE POSITIVES OF ScannerScope
	C Robustness Against Adversarial Attacks
	D Performance Overhead in Proxy Mode
	E Ethics

