
Harnessing Multiplicity:
Granular Browser Extension Fingerprinting through User Configurations

Konstantinos Solomos
University of Illinois Chicago

Chicago, IL, USA
ksolom6@uic.edu

Nick Nikiforakis
Stony Brook University
Stony Brook, NY, USA

nick@cs.stonybrook.edu

Jason Polakis
University of Illinois Chicago

Chicago, IL, USA
polakis@uic.edu

Abstract—Browser extension fingerprinting poses a dual pri-
vacy threat to users, as it can be used for both tracking (e.g., as
part of browser fingerprinting systems) and directly inferring
sensitive user data (e.g., religion, medical issues). In this work,
we conduct a novel study that expands the view held by all
prior extension-fingerprinting studies, which were limited to
detecting whether an extension is installed or not, and show
that extensions can exhibit diverse behaviors and features when
personalized by users. We introduce the concept of multi-
fingerprinting, which aims to harness extensions that exhibit
diverse behaviors due to such personalization. Accordingly, we
develop Hecate, a system that employs multiple techniques,
including static analysis and fuzzing, for generating diverse
extension configurations and capturing the corresponding be-
havioral signatures. We conduct an extensive experimental
evaluation of Hecate, and find that it triggers diverse behaviors
by uncovering and fuzzing configuration options in extensions
installed by millions of users. Additionally, we analyze the
real-world impact of multi-fingerprinting through a pilot user
study, in which 25% of the users can be uniquely identified
through multi-fingerprinting. Our study demonstrates the im-
pact of extension personalization on the fingerprintability of
extensions, while also highlighting the significant real-world
privacy risk posed by multi-fingerprinting.

1. Introduction

Web browsers are the essential gateways to the Internet,
granting users access to a multitude of services. Instead of
simply fetching and rendering webpages, modern browsers
incorporate a rich collection of internal features that enhance
the users’ browsing experience. At the same time, they
also allow users to augment their capabilities by installing
browser extensions; these have gained significant popularity
due to their ability to customize web content and deliver
new functionality. Lately, the integration of advanced AI
language models like ChatGPT into Chrome extensions
has contributed to the additional growth of the extension
ecosystem, with those extensions already being installed by
millions of users [1]. However, extensions also introduce
privacy risks, since websites can employ specialized tech-

niques for detecting their presence, using them to track users
and infer private user data.

Contrary to traditional browser fingerprinting techniques
that mainly rely on JavaScript for accessing browser features
directly [2], fingerprinting browser extensions presents chal-
lenges due to the absence of a dedicated internal or external
browser API. To tackle this, researchers have proposed
various fingerprinting techniques that focus on different
aspects of extension functionality and execution. Early at-
tacks detected the presence of extensions by probing for the
extension’s resources [3]. More recent studies have shifted
towards fingerprinting extensions based on the side-effects
of their behavior and execution patterns. These techniques
infer the presence of extensions by identifying extension-
produced page modifications [4], [5], and stylistic alter-
ations [6]. Extension fingerprinting has also seen extensive
real-world deployment as part of the FingerprintJS frame-
work [7], as well as on websites detecting the presence of
ad-blocking extensions [8].

While prior studies have greatly advanced extension
fingerprinting, they have overlooked a crucial aspect; ex-
tensions are highly dynamic and multifaceted, capable of
exhibiting diverse behaviors. Similar to browser fingerprint-
ing, where a fingerprint may change based on the browser’s
configuration, extension fingerprints also exhibit a similar
behavior. In fact, a specific user’s personalization of an
extension’s appearance and functionality can result in a
different set of modifications to the webpage and, thus,
a different extension fingerprint compared to other users.
This, essentially, will result in the extension fingerprint
collected during the attack phase not matching the finger-
print that was generated by the fingerprinting system during
the extension analysis phase and, hence, the attacker being
unable to fingerprint that specific extension. Crucially, this
dynamic nature of extensions affects all prior fingerprint-
ing approaches as they did not consider how extensions’
behavior could diverge due to user customization and only
collected a single signature for each extension (i.e., for the
default configuration).

Interestingly, this dynamic behavior also creates an op-
portunity for attackers to amplify the discriminating power
of detecting a given extension. Specifically, in prior work
each extension could only provide a single bit of entropy

(whether it is installed or not) and all of an extension’s
users were considered part of an anonymity crowd of size
N (where N is the number of downloads). However, an
extension’s personalization (including its specific settings,
preferences, and configuration) can provide more entropy
through variations in the generated fingerprints. In practice,
all prior systems would only target a single fingerprint
for an extension in the wild, limiting their practicality and
accuracy. This leads to an overestimation of extensions that
can be fingerprinted, since for customized extensions the
resulting signature would be missed.

In this paper, we introduce the novel concept of multi-
fingerprinting to address this gap in prior approaches. We
develop Hecate, a comprehensive fingerprinting system that
incorporates this concept for collecting extensions’ different
option artifacts and generating multiple unique fingerprints.
Hecate utilizes different techniques to extract extension
options, generate multiple configurations, and dynamically
exercise extensions by applying these configurations. Specif-
ically, our system extracts the extension options through
the extension’s storage (Ext-Storage) and applies clustering
and fuzzing techniques to generate numerous configurations.
Subsequently, it dynamically applies the configuration to
each extension and multi- fingerprints it by collecting all
of the associated signatures.

Subsequently, we explore Hecate’s capabilities through
an extensive experimental evaluation and find that ≈13% of
fingerprintable extensions employ Ext-Storage. Subse-
quently, our system is able to infer the availability of con-
figuration options in 2,303 extensions and collect multiple
signatures for 597 (14.7% of which were not fingerprintable
by prior state of the art), as Hecate triggers additional func-
tionality in the extensions by fuzzing their configurations.
This results in the collection of a wide range of addi-
tional unique signatures, with highly dynamic extensions
exhibiting hundreds of signatures. These extensions have
been installed by more than 10 million users, highlighting
the privacy risk of multi-fingerprinting, as the extensions’
anonymity sets are significantly reduced regardless of the
size of their respective user base. Finally, we conduct an
IRB-approved pilot user study and collect the extensions
and fingerprints of 375 real users to assess the impact of
multi-fingerprinting. Our study demonstrates that individuals
do indeed personalize their extensions, and finds that 25%
of the users are uniquely identifiable through their installed
fingerprintable extensions. Surprisingly, we found 12 users
with a popular customizable extension (Dark Reader), all of
which had their own distinct and unique configuration.

Overall, by introducing the concept of multi-
fingerprinting we provide additional insights and a
previously unexplored dimension of the extension-
fingerprinting landscape. Our study makes a significant
contribution in the broader area of extension fingerprinting,
as it highlights the dynamic nature of extensions and the
privacy implications of extension personalization, a practice
that not only increases the coverage obtained by extension
fingerprinting but, crucially, can significantly increase

the obtained entropy associated with detecting installed
extensions.

In summary, our research makes the following contribu-
tions:
• We propose multi-fingerprinting, a comprehensive strat-

egy that incorporates multiple techniques for uncovering
diverse extension behaviors and increasing the entropy
obtainable by any behavior-based extension-fingerprinting
system.

• We develop and evaluate Hecate, an automated multi-
fingerprinting system. We experimentally demonstrate its
effectiveness, and conduct a detailed analysis and user
study that illuminates the prevalence and implications of
extension personalization.

2. Background and Threat Model

In this section, we present pertinent background informa-
tion on extensions, and provide technical details regarding
our techniques.

Extension architecture, scripts and components. Ex-
tensions are comprised of various components that interact
with each other and ultimately perform the extension’s
functions. The Manifest file specifies the necessary de-
pendencies, permissions, as well as resources needed for the
extension to function properly and achieve its purpose. The
core scripts responsible for interacting with the visited web-
page, including content modification, resource loading, and
communication between extensions, are commonly known
as Content Scripts. Extensions utilize these scripts to
interact with and alter the page, while also communicating
with the other scripts and components through browser
APIs. Content scripts are declared in the Manifest under an
entry that designates the domains on which they are allowed
to execute and other required permissions. Typically, content
scripts employ DOM requests to manipulate the page, and
may also inject additional custom scripts, functions and
event listeners required for their functionality.

An extension’s primary application logic is usually im-
plemented through HTML and JavaScript in Background
Scripts. These scripts operate as individual processes
within the browser and handle most of the functions that
content scripts cannot perform. Since they do not have direct
access to the page, they interact with other components by
using the appropriate APIs (e.g., Messaging, Runtime [9],
[10]). However, since Manifest version 3.0 is now supported
in the latest Chrome versions, and Manifest version 2.0 will
eventually be removed, background scripts will be replaced
by Service Workers [11]. Extensions will no longer
be able to use the background page to execute code in the
background, requiring instead the use of service workers that
are registered with the browser. The new Service Worker
API has been designed to offer improved security and
performance when compared to the previous Background
Page API [12]. It provides developers with an extensive set
of capabilities and ensures the integrity and isolation of the
code in the background.

2

Extensions allow users to customize their functionality
through an Options page. The options page is a ded-
icated component and consists of a typical HTML web
page. This page allows users to enable or disable features
of the extension, customize appearance or functionality,
and configure advanced settings related to network usage,
security, etc. Typically, users access the options page directly
by clicking the extension icon in the browser toolbar or
by navigating to chrome://extensions, locating the
target extension, and clicking the options link. Developers
can declare the page options in the Manifest file, either under
the options_page field if the page is displayed in a new
tab, or under the options_ui field where the options are
embedded inside the management page.

//Options page configuring color and position
var color = document.getElementById('color').

value;
var position = document.getElementById('position

').value;
//Save in the extension storage
chrome.storage.local.set({colorSelection:color,

positionSelection:position})
//Backend extension storage
{colorSelection:'red',positionSelection:'top'}

Listing 1: Simplified example of an options page interacting
with Ext-Storage for saving and retrieving options.

In order to manage data (be it user-related, execution-
related or otherwise), Chrome provides the Storage API,
which is designed for storing persistent extension data [13].
Despite the absence of specific guidelines from Chrome
regarding extensions using the storage API to store options
(i.e., configurations), it is a commonly employed approach
among developers – even code snippets from the official
documentation making reference to handling extension-level
options using this API [14]. Extension storage is similar to
the typical web API of local storage, but it is dedicated
solely for extension usage. If the user clears any browser
cache, the extension data persists since it is stored in a sep-
arate database inside the client’s filesystem (Level DB),
that only the extension can access and modify. Storage API
supports mainly two storage areas, the local and sync.
The local area can hold up to 5 MB of data and is erased
when the extension is removed, while the sync area allows
the synchronization of data to any browser that the user has
logged in, and can store up to 100KB of data. Moreover,
developers can also listen to changes in the storage using
the chrome.storage.onChanged event, which allows
for updating its options immediately after the user changes
them. Developers access the storage API after declaring the
storage permission in the extension Manifest. Listing 1,
shows an example of options-handling in the options page
and the corresponding extension storage. For the remainder
of our paper we will refer to the extension storage as Ext-
Storage.

Motivating Example. There is a wide range of exten-
sions that enhance the user’s experience on websites by
modifying each page and customizing the appearance based
on the user’s needs. An example of such an extension is

(a) Light mode acti-
vation.

(b) Brightness adjust-
ment.

(c) Dark mode acti-
vation.

Figure 1: Different extension configurations and the result-
ing page modifications.

“Dark Reader” with over 5,000,000 users, which offers
a set of configurations that allow users to modify the appear-
ance of the page. Figure 1 illustrates the different extension
configurations and the resulting changes to the page. In
Figure 1a, the light mode option is enabled, resulting in
a change from the webpage’s default white color. In Fig-
ures 1b and 1c, the brightness and dark mode are modified
and the appearance of the page changes accordingly. The
motivation behind our work arises from the observation that
the options provided by an extension can dynamically alter
its behavior, leading to modifications in the appearance and
functionality of the visited web page (which would cause
prior fingerprinting systems to miss it). We note that our
objective is not to infer sensitive data from each extension
configuration. Instead, we aim to automatically generate
multiple extension configurations that result in distinct be-
havioral fingerprints, moving from the binary fingerprinting
strategy of all prior work (i.e., “Is the extension installed?”)
to a fine-grained strategy leveraging multiple distinct fin-
gerprints (i.e., “Has this user installed and configured the
extension?”).

Threat model. We adopt the well-established threat
model used in prior browser fingerprinting studies, and
assume that the user simply visits a malicious web page that
aims to infer the extensions installed in the user’ browser.
The attacker controlling the page has already gathered the
configuration options for each extension during a prepara-
tory preprocessing phase, and generated multiple signatures
for each extension that capture the configurations that can
be applied by users. We emphasize that the attack utilizes
the extension storage exclusively during the preprocessing
phase for inferring detailed information about the exten-
sion’s behavior and examining its configuration and the
resulting fingerprints. During the actual attack (i.e., when
the user visits the attacker’s webpage) our system collects
the extension signatures only by observing the changes made
to the webpage’s DOM; the attack does not require access to
the extensions’ storages (which are, naturally, not accessible
by the webpage). Furthermore, in line with prior research,
we focus on extensions that operate on all domains and do
not limit their functionality to specific domains, as these
extensions can be detected by any attacker.

3. System design

Here we detail our approach to multi-fingerprinting
(MultiFP) extensions based on their configurable charac-

3

Honeypage

Storage
Collector

Extension
Storage

Static
Analysis

Preprocessing

Dataset

Fingerprinting

Extension
Configuration

Filtering

Apply
Configuration Honeypage MultiFP

DOM
Signatures

Dynamic Extension
Exercising Key Clustering

Options
4

{key,value}

5
Fuzzing

3

1

2

6 7

Figure 2: Overview of Hecate’s two main workflows: During the preprocessing phase, the system analyzes extension’s
source code and Ext-Storage, to extract extension’s options and generate multiple configurations. During the fingerprinting
phase, the system dynamically applies various configurations and extracts DOM fingerprints.

teristics. Our methodology comprises of two phases; in the
preprocessing phase, we analyze and extract the extension’s
configurations and apply fuzzing techniques for generat-
ing multiple option values. In the fingerprinting phase, we
apply each configuration and collect the additional DOM
signatures that result from the configuration. A detailed
breakdown of our system, Hecate, and its components is
illustrated in Figure 2.

3.1. Preprocessing Phase

Since we are interested in extracting each extension’s
options, we perform two types of analysis. First, we extract
the extension’s options from its backend storage (Ext-
Storage) and, subsequently, we perform static analysis on
the extension’s source code to extract additional extension
storage references.

As previous studies have shown [15], [16], navigating
through a web or mobile application is far from trivial.
Similarly, extracting an extension’s options and categoriz-
ing them can be challenging, requiring sophisticated web-
scraping techniques that employ heuristics for successfully
locating the options page, interacting with it, and identifying
its structure and components. Option pages can be arbi-
trarily constructed and may include complex elements and
advanced HTML structures, as well as content in different
languages.

We bypass these challenges and extract the extension’s
options by directly reading the extension’s storage and col-
lecting the necessary data. To ensure that our method is not
bound to a specific operating system and can operate across
browser vendors, we do not read the backend database
directly from the filesystem but, instead, dynamically collect
it while the extension runs in the browser. Crucially, to con-
duct the analysis, we extract the contents of each extension
to directly access and modify its structure and code (e.g.,
Manifest, content scripts). We perform this step solely
during the preprocessing phase. In the fingerprinting phase,
we utilize the extension as it was provided by the Chrome
Store and do not interfere with its intended execution and
components.

1 Storage Collector. We focus on extensions that em-
ploy the Ext-Storage for handling configuration options.

Based on an initial manual analysis, we found that Ext-
Storage is typically created when the extension is installed
in the browser and first initiated. In other implementations,
the storage is populated when the user clicks the extension
button and navigates through the extension’s options. In our
approach, we attempt to extract the extension’s storage by
replicating the required user interactions that trigger the
extension into creating its storage. First, we generate an
additional content script that extracts the extension’s storage
and stores it in a separate JSON object. We follow this
approach and choose not to inject the function that reads
the storage in the extension’s content script so as to avoid
interfering with the extension’s execution. We also alter
the extension’s Manifest and include our controlled content
script. When the extension is active, our content script runs
concurrently with the extension’s content scripts, without
infererring with their intended functionality.

chrome.storage.sync.get(null,function(items){
var allKeys=Object.keys(items)
var allValues=Object.values(items)
var ext_local=JSON.stringify(allkeys)+JSON.

stringify(allValues)
//make object available to the page
window.localStorage.setItem('ext_local',

ext_local)
})

Listing 2: Source code of our controlled content script that
extracts the entries of the Ext-Storage.

Listing 2, illustrates the functionality of the content script
used by the Storage Collector to detect and extract the Ext-
Storage. The script operates as a typical content script, run-
ning in parallel with the other components of the extension,
and it detects the presence of Ext-Storage when available.
The process of extracting the “sync” and the “local” exten-
sion’s areas are identical and no other functionality or API
is required. The data is made available to the page through
the local storage entry, and the content-script does not
interfere with the extension components or the page. After
the content-script executes, the data is available to the page
directly and can be collected and analyzed further by the
other system components. It is designed to avoid additional
overhead from message-passing between the extension and
the page, by making the data available in JSON format via
the page’s Local Storage.

4

As detailed above, the extension creates its storage after
the first initialization or when the user interacts with the
options page. To extract it, we install the extension in the
browser and navigate to a “honeypage”, a page that we
control which aims to trigger extension functionality through
the presence of a wide range of specific HTML elements
(forms, buttons, terms, etc.). This honeypage also extracts
the extension’s resources and behavioral signatures. During
the first visit, we let the extension initialize itself and fetch
any required resources, and then close the tab and revisit
the honeypage in a fresh tab to minimize any interference
with the first load. During the second visit, our controlled
content-script runs in the page and retrieves the entries saved
in the storage. We also automate the user’s interaction by
clicking on the extension icon to trigger the extension so it
can populate the options in its Ext-Storage. After allowing
some time for the extension to complete its functionality, our
content-script retrieves the storage and makes it available to
the webpage in the form of a JSON object containing sets
of key:value pairs. Once the object is available, we store
it for further processing.

2 Static analysis. The aforementioned component that
is responsible for extracting extension storage data plays
a fundamental role in our system. However, extensions
may also reveal additional options and configurations under
certain conditions. For example, an extension may initiate
additional options whenever a specific element is present on
the page or when a user interaction is triggered. Since we
cannot exhaustively exercise an extension to exhibit all pos-
sible behaviors, we collect additional options through static
analysis. Specifically, our goal is to gather further option
keys that were not initialized in the previous stage, and also
accumulate as many corresponding values as possible for
both the newly collected keys and those previously acquired.

To that end, we design a methodology for detecting
Storage API calls, and extracting their arguments and val-
ues. The methodology relies on a set of heuristics that
identify API calls regardless of the code’s structure. At
first, we use Python’s jsbeautifier API [17] to de-
obfuscate extensions’ scripts code. Since options and Ext-
Storage might be accessed by any extension component,
we analyze all such scripts. We leverage Esprima [18], a
popular static analysis framework, to build each script’s
Abstract Syntax Tree (AST). Once the AST is created, we
focus on the calls to chrome.storage.local.set()
and chrome.storage.sync.set(), as these API calls
are associated with the Ext-Storage. To detect them, three
conditions need to be satisfied. First, the node’s callee
type and the callee.object.type need to be Mem-
berExpression. The second requirement is that the ob-
ject.object.name must be “chrome” and the object’s
property name “storage”. Finally the property needs to be
labeled as “set”.

Once we have located the function calls, we extract
the arguments by accessing the arguments property of the
CallExpression node. This property contains an array
of argument nodes, each of which represents one of the

arguments passed to the function. We then traverse these
argument nodes to access the Property node where it
stores the values of each argument. For example, for the call
chrome.storage.local.set({x:5}), we access the
first argument node in the “arguments” table and extract
the key (“x”) and “value” properties of the “Property” node
representing the value of the argument (x=5).

Depending on the implementation, the source
code might also contain cases where storage calls
contain symbolic variables. For instance, the call
chrome.storage.local.set({foo:bar}) sets
a variable “foo” and the value is another variable “bar”,
which can be of any type. To handle this, we categorize
the values extracted from the previous step and exclude
those that belong to a primary type (e.g., string). For
the remaining values, we perform a traversal of the AST
to extract all the potential values. Since we know the
variable’s name, on each traversal, we attempt to detect
all the ExpressionStatement node types where the
“left” property’s label is the variable and the “right” part
of the expression contains the value. We gather all the data
extracted from the static analysis and the Storage Extractor
component, remove any redundancies, and form a list of
potential options. For the keys that we collect, even if
there are extracted values, we include them in the options
and handle their values in the subsequent phases of our
analysis.

3 Key Clustering. After collecting all the options
data, we analyze the keys of the option objects and catego-
rize them based on their type and values. Since we aim to
generate multiple extension configurations, term clustering
is suitable for grouping all the keys of the same or similar
context. Option keys do not follow any specific pattern,
and can either be a typical English term (e.g.,“enable”),
acronyms, initials, or even arbitrary strings. Clustering such
terms is challenging since there is no dedicated algorithm for
this type of non-uniform data. However, our objective in the
data collection process is not to achieve perfect clustering
and grouping of the data; instead, we aim to collect the
values associated with each keyword and expand their value
range. Given that the extension storage may include vari-
ables that are not linked to extension configurations, Hecate
employs a best-effort approach to gather and classify key-
value pairs, filtering out those unrelated to configuration set-
tings. To ensure the formation of a representative dataset, we
also manually analyze the extracted data. While unrelated
variables may still be considered and tested, those that are
not user-facing configuration options are unlikely to alter
the extension’s behavior and resulting signatures.

We employ the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm, which is a
widely used algorithm for clustering data [19]. The algo-
rithm starts by selecting a random data point, then examines
its neighboring points within a specified radius, and if there
are sufficient neighboring points, it identifies them as a
cluster and proceeds recursively. The algorithm also requires
a metric to compute the distances between keywords, and

5

TABLE 1: Cluster labels with examples of popular keys and
representative values.

Cluster Keywords Values

enable, enableInjection, true, off
Boolean activate, isLoaded, is open yes, close

Appearance
transparency, sensitivity, 8px, center,

opacity, decoration, underline, 0.5,
shadow, blur, gradient hidden, 50%

color, background-color, black, #5EAE64,
Color text-color, border-color rgb(255,255,0)

Position
position, width, top, 20px,

height, resolution, margin 800x600
selected lang, locale en, es-ES

Language language, langToTranslate, english, spanish

Fonts
font-family, font-style, 3em, bold,
font-variant, font-size Arial, small-caps

for this we apply the Levenshtein distance metric. Finally,
we also optimize the algorithm by applying the Silhouette
Method to find the optimal number of clusters [20]. As
shown in Table 1, we have identified six key clusters, each
representing a different type of data stored in the options
objects. The size of clusters varies, as some keywords are
more common or share parts with other keywords (such
as “color” and “background-color”), while others are less
frequent and only appear in a small number of options. Re-
garding the Boolean cluster, we formed it manually before
applying the clustering algorithm, based on the keys being
associated with Boolean and Boolean-like values.

We manually verify each cluster extracted by the al-
gorithm to ensure that it does not include any arbitrary
data. We also appropriately merge smaller infrequently-
referenced clusters with larger ones. For example, in the
Appearance cluster, we group together the less frequent
keywords and generate individual clusters, such as blur,
transparency, opacity, since they all reflect similar attributes
on the page and describe similar options. Likewise, we
perform additions and alterations in every cluster to expand
them effectively. In general, each keyword within the same
cluster can have different values based on its initial value.
For instance, opacity can be represented as either a float or
a percentage. Clustering allows us to match keys without
initial values to a set of potential values based on the other
grouped keywords.

4 Fuzzing. After extracting and clustering the
extension-option data, our next objective is to generate
multiple extension options that represent potential extension
configurations. To accomplish this, we draw inspiration from
software fuzzing. The main idea behind fuzzing is to gener-
ate a large number of test cases with diverse inputs, in order
to identify flaws in the software’s behavior. In our case, we
use this technique to extract potential values from the data,
and apply them to the extension configuration with the goal
of changing an extension’s behavior and, ultimately, leading
to additional extension signatures.

First we focus on the keys belonging to the Boolean
group, which holds keys that have values that are directly

stored as boolean, or the value is a string but stores binary
information. This includes all the keys that store data such
as ‘‘No’’,‘‘Off’’,‘‘Activate’’. Since these type
of keys do not have a wide range of potential values,
we directly generate all the values by applying the logical
negation (not) to their initial value. For the binary strings,
we analyze the form of the value, and also extend it ac-
cordingly (e.g., isOn is changed to isOff). The above
analysis is straightforward yet fundamental for Hecate’s data
generation.Next, we focus on the clusters that hold diverse
forms of data. First, we analyze each cluster’s values, and
we group together values that belong to the same category
and type. For example, in the cluster that holds color keys,
we find different values of colors (“red”,“green”) and group
them together. Using heuristics, we then detect the context
of all other string values and categorize them accordingly.
The main categories include hexadecimal (common repre-
sentation of colors), language codes, country codes, percent-
age strings, CSS layout keywords, resolutions, and strings
storing numerical values.

Next we expand each category and generate new po-
tential values. For instance, in the case of language codes
(e.g., initial value “en”), we include the 30 most common
languages in the list of values. Similarly, for the color keys,
we include multiple values in their required form (e.g., string
representation or hex). Regarding position-related values
and percentages, we randomly generate 100 values and we
apply them in the list of values for each key. Similarly, we
generate common resolution strings (in the form of Width
x Height) as well as common CSS layout keywords (e.g.,
top-left, bottom-right).

The last value type that we handle is numeric values,
whether they are stored as strings or directly as integers or
floats. Since we cannot infer their usage based solely on
the key name, we generate a list of representative values
that are bounded in a way that reduces misconfigurations.
Specifically, for each numerical value we produce four new
values: two that are 10% over/under the original value, and
two that are 100% over/under the original value. These
transformations are meant to capture how minor and major
adjustments affect an extension’s signatures without using
arbitrary values that may crash the analyzed extensions.

5 Generating Extension Configurations. In the final
preprocessing step, we gather all the data extracted from
the fuzzing process. Based on the initial structure of each
extension’s options, we apply the newly collected values to
generate all available extension configurations. This allows
us to simulate the actions where a user interacts with the op-
tions page and configures an extension, while circumventing
all the aforementioned issues with handling arbitrary UIs.
To be as comprehensive as possible, we generate a large
number of configurations that will later be used as input
for exercising each extension and extracting its signatures.
To generate these configurations, we follow a top-down
approach and start by modifying keys with a limited set
of values (e.g., binary). We store each new value in the
corresponding key and generate a new configuration con-
taining it. We proceed by altering the keys that have a larger

6

range of potential values and, similarly for each value, we
generate a new configuration. When all the values have been
applied for each key, we then proceed with a combinatorial
approach, where for each configuration that has more than
one key, we select two keys and apply their values to
generate all the possible combinations. We then proceed
with modifying three keys and applying the same approach
again. This process ends when all the keys are modified,
and all corresponding configurations are generated.

3.2. Fingerprinting Phase

Once we have gathered all the required data related to
an extension’s configuration, we focus on identifying the ex-
tension’s behavioral signatures through DOM modifications.

6 Dynamic Extension Exercising. For each exten-
sion configuration, we employ the same technique used
in the Storage Collector component for save the data to
storage. Specifically, we initially install the extension in
the browser and allow some time for it to initialize be-
fore closing the tab. We then inject the options into the
extension’s storage through a separate content script, for
the extension to read and apply them. The content script
holds all the required information for saving all the op-
tion entries in the Ext-Storage. For example, to apply a
modification to a binary value, it includes the follow-
ing code: chrome.storage.local.set({enable:
false}). During the second visit to the controlled page,
the extension accesses the Ext-Storage and applies the con-
figurations based on the stored options. Our system bypasses
any user-based interaction that might be required for config-
uring an extension, and successfully stores the data directly.
After applying the extension configuration, we let the ex-
tension again perform its intended functionality, and collect
the extension’s behavioral modifications (e.g., modifications
introduced to the page’s DOM). We follow the approach
of continuous data collection introduced by Solomos et
al. [21], and include a Mutation Observer [22] on
the webpage to collect all the data. The resulting signature
contains an ordered set of continuous modifications that
are distinguished based on the type of the modification
(e.g., addition/removal of page element, or alteration of an
attribute).

7 Filtering & Fingerprint Generation. Here we
gather all the DOM signatures in order to form the final
fingerprints for each extension. We extract all the signatures
and filter out all identical signatures, which allows us to
form the Multi-Fingerprint set of signatures for each
extension.

4. Framework Implementation

In this section, we provide an overview of the APIs,
frameworks, and techniques used to develop the various
components of Hecate. To enable interactions with the
browser and webpages, we utilize the Selenium frame-
work [23] to automatically control the browser. For the Stor-
age Collector component, we additionally employ Python’s

PyAutogui API [24] to emulate the user’s navigation to the
webpage, discovery of the extension button, and click ac-
tions. To accomplish this, we provide the mouse movement
with x,y coordinates that direct it to the extension icon
and enable the click action. Since we have control over the
browser and its automation, this process is straightforward
and can be applied across all extensions.

We reached out to the authors of the Chronos frame-
work [21] who provided us with access to their data,
including datasets, honeypages, and fingerprint generation
code. This allows us to directly contextualize our findings
in comparison to the capabilities of existing state-of-the-art
techniques. The honeypage employed by Chronos and other
extension fingerprinting systems [25], [5] contains multiple
resources from a realistic webpage, and is capable of trigger-
ing extensions. In various components of our methodology,
we typically allow extensions to initialize themselves for
a specific duration before collecting their Ext-Storage and
fingerprints. We use a threshold of 8 seconds, which was
found to be adequate for extensions to reveal themselves and
perform their intended functionality according [21]. Finally,
all of our analysis including static analysis, clustering and
fingerprints was implemented in Python using built-in and
external libraries [26], [27].

To enhance our system’s efficiency, we deploy our
framework in a Docker Container [28], that gives us the
flexibility to run multiple parallel browsers, with different
configurations and versions, under different scenarios. For
all of our experiments we employed two desktop machines
with a 6-core Inter Core i7-8700 and 32GB RAM connected
to the university network. We host the honeypage in our
university’s infrastructure and network, using Python’s Flask
framework [29] under an nginx server [30].

5. Evaluation

In this section, we present our extensive experimental
evaluation of Hecate as part of our exploration of multi-
fingerprinting.

Dataset. For our evaluation, we utilize the dataset pro-
vided by Chronos [21], consisting of 38,482 extensions
collected between 2018 and 2021 where 12,251 extensions
are uniquely fingerprintable. Additionally, in March 2024,
we collected a new dataset comprising 23,269 extensions
that operate across all domains without restrictions. Among
these, 15% are newer versions of extensions found in the
original Chronos dataset. We also ran Chronos on the latest
dataset and fingerprinted 5,124 extensions. Our analysis
focuses on the following datasets: FP_Ext, which con-
tains 17,375 uniquely fingerprintable extensions and their
multiple versions, and NonFP_Ext, which includes 44,376
extensions that were not fingerprinted in any dataset or
did not generate a unique signature. Since our focus is on
extensions that are fingerprintable, we perform the majority
of our analysis on the FP_Ext dataset.

7

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6 7 8 9 10

E
x
te

n
s
io

n
s
 (

%
)

Options Size

Figure 3: Number of entries in the options.

5.1. Extension Options Characteristics

By running our Storage Collector, we are able to extract
2,303 extension options, and ≈13% of the fingerprintable
extensions employ Ext-Storage. It is worth noting that
extensions may utilize the storage for various purposes (e.g.,
execution-related data) and there is no distinction between
stored options and the rest of the data. Nonetheless, our
clustering approach enables us to collect all the keys that are
part of an extension’s configuration and extend their values
accordingly.

Figure 3 shows the distribution of the number of keys
for each option object collected. As can be seen, the lower
number of keys is more frequent, with 41% of the extension
options containing only 1 key, followed by 2, 3, and 4
keys accordingly. Since the distribution is not uniform, the
frequency of keys beyond 5 is less than 5%, with the
number of keys of size 9 having a value of 1%. Addi-
tionally, an aggregate of ≈ 6% of the lower frequencies
represents the number of keys higher than 10, with the
maximum number of keys found in options being 224.
This result indicates that developers often offer users few
and straightforward configuration options reflected through
a limited number of option keys in Ext-Storage. The
minority of cases where large numbers of option keys are
involved, are associated with complicated extensions that
expose more advanced features and dynamic behaviors. For
the rest of our analysis, based on this distribution, we will
distinguish the options dataset into two groups: 4 groups
of options with keys up to 5, and 1 group of options with
keys over 5 entries. We will refer to them as Sx where
x defines the number of keys. To better understand the
types of values stored by the options, we categorize them
into Boolean, Numeric, and String and count their
occurrences in each subset. Figure 4 illustrates the types
of values for the different subsets of options. The Boolean
category is the most dominant across all datasets, indicating
that the majority of options contain at least one boolean key.
Moreover, in the S5 subset that contains the highest number
of keys in options, ≈ 90% of the options include boolean
keys. We expect that most user-exposed Boolean options
are related to user-controlled enabling/disabling of specific
functionality in each extension. The second most popular
type is numeric values, followed by string values. Similarly,
we observe that the subsets that contain multiple keys store

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4 S5

Boolean Numeric String

O
c
c
u

re
n

c
e

s
 (

%
)

Option Subset

Figure 4: Types of values for each subset of options.

a more diverse set of values, reflecting the presence of
multiple options.

5.2. Multi Fingerprinting

In “multi-fingerprinting”, our goal is to collect as many
signatures as possible, reflecting different behaviors trig-
gered by different extension configurations. Table 2 presents
a breakdown of MultiFP detections of Hecate for each
subset of the dataset. In summary, after applying each of
the techniques, we are able to generate additional signatures
for 509 extensions. Next, we detail the different exercising
techniques and analyze various aspects of MultiFP.

Exhaustive Testing. For the first experiment we utilize
an exhaustive strategy, which involves testing a large number
of configurations for each extension. Since we do not know
which of the potential value will effectively customize an
extension, we apply all the values that we have extracted
for each key through the fuzzing procedure, individually.
By applying this technique, we are eliminating the need for
choosing the appropriate configuration for each extension,
as the exhaustive testing reveals an “upper bound” on an
extension’s signatures. We test each value of every key
individually, one key at a time, without interfering with the
simultaneous selection and modification of multiple options.

Table 2 shows the number of MultiFP extensions for
each subset (column “Exhaustive”). For each subset Hecate
is able to successfully trigger extensions into revealing addi-
tional signatures, based on the applied configuration. For the
S1 subset, which contains the higher number of extensions,
we observe that ≈ 13% of the extensions generate additional
signatures. For the subsets of the dataset that hold higher
number of keys, the detection rate increases to 36% for
the S4 and 22% for the S5, respectively. This confirms that
extensions that include higher number of options will yield
additional fingerprints. The options available in an extension
determine its behavior, which after customization results in
different visible modifications being made to the page.

Random Key Sampling. After exploring the exhaustive
technique, we introduce a different strategy and focus on
experimenting with different option subsets. In this experi-
ment, we choose multiple keys simultaneously to assess the
impact of selecting multiple options and customizing the
extension accordingly. Since extensions may expect multiple
keys to customize their behavior, this approach aims to

8

TABLE 2: Detailed number of extensions and their MultiFP
signatures for each subset of the FP_Ext.

Subset Extensions Exhaustive Keys25% Keys50% Keys75% Keys100% Unique

S1 952 128 N/A N/A N/A N/A 128 (13.4%)
S2 355 82 N/A N/A N/A 65 94 (26.4%)
S3 180 41 N/A N/A 28 23 50 (27.7%)
S4 180 65 N/A 30 42 39 76 (42.2%)
S5 636 143 34 64 66 103 161 (25.3%)
Total 2,303 459 34 94 136 230 509 (22.1%)

capture more complex extension constraints. To evaluate
the technique, we randomly select N option subsets, where
N represents the ratio of chosen options. Specifically, we
conduct experiments with different ratios (25%, 50%, 75%,
and 100%) in order to cover a range of option subsets.
The selection of subsets is adjusted based on the size of
each option object. For instance, for smaller sets of option
keys we only select 75% and 100% when applicable since,
e.g., choosing 50% of 1 option-key is not meaningful. For
options storing more than 5 keys, we are able to apply
all the percentage values. Regarding the value range, we
narrow down the set of values that we previously tested by
extracting only those that, when applied in the exhaustive
strategy, resulted in MultiFP signatures. In cases where the
method selects a key that was not associated with a MultiFP
signature, we apply all the extracted values, with an upper
limit of 20 values per key.

Table 2 presents the results of the random sampling
technique for the different sizes. For the smaller subsets
of our dataset (2 and 3) we observe that the sampling tech-
niques reveals nearly the same number of extensions as the
exhaustive technique. However, in the larger subsets, each
technique reveals a different number of extensions, with the
75% and 100% selection subsets being more successful.
This emphasizes the importance of utilizing multiple values
when configuring extensions that have multiple options.
These extensions rely on different values being assigned
to their configuration in order to modify their behavior,
which in turn modifies their DOM signature. Furthermore,
when selecting options and assigning distinct values to each
key, there is a possibility of unintentionally disabling cer-
tain functionality within the extension. Also, contradictory
options may be applied, and this may lead to either an
interruption in the extension’s functionality or no discernible
change to the extension’s signature. In total, each technique
has its own unique advantages and by combining them
we are able to successfully multi-fingerprint 509 unique
extensions. Overall, we conclude that extensions exhibit
multiple behaviors when appropriately configured.

MultiFP Properties. After multi-fingerprinting each ex-
tension, we analyze the number of signatures – we show
their distribution in Figure 5a. We find that 51% of the exten-
sions exhibit one additional signature. This suggests that the
majority of configuration-sensitive extensions introduce one
more behavioral modification, resulting in one additional
signature that differs from their initial. This observation
may indicate that developers provide simple configuration
options to make slight adjustments to the extension’s be-
havior. Furthermore, we are able to trigger between two

and five additional signatures for around 35% of the ex-
tensions. About 5% of the extensions exhibit more than 100
signatures, indicating that these extensions possess multiple
widely configurable options, and each value assigned to
these options influences the extension’s signature. Exten-
sions that alter the appearance of the page utilize keys with
varying values, and each value directly modifies the page.
For example, keys such as color, contrast, and brightness can
have multiple values individually and, when combined, they
all generate additional different signatures. However, these
extensions are not restricted to this specific upper bound of
signatures and can generate up to N signatures when dif-
ferent configurations are applied and advanced combination
techniques are introduced.

To further quantify the properties of MultiFP, for each
option size we count the number of the detected MultiFP
signatures. Figure 5b presents the distribution of MultiFP
signatures for each extension, ranked by the option size. For
extensions with a single configurable option, the distribution
of signatures is diverse, ranging from 1 to 100. This indi-
cates that, depending on the type of configurable option,
a single option does not necessarily translate to a single
additional fingerprint. For extensions with 5 or more keys,
we observe that the total number of MultiFP signatures trend
upwards. This suggests that these highly-configurable exten-
sions change their page footprint depending on a number of
properties which in turn results in additional signatures. At
the same time, a larger number of options does not necessar-
ily lead to a larger numbers of signatures. Even for options
≥ 10, there are extensions that generate only one additional
signature. This indicates that only one of the multiple keys
in the configuration directly affects the signature, and the
others do not affect the extension’s behavior/appearance in
a detectable manner. Overall, we observe that the absence
of a standardized definition of options by Chrome and the
lack of developer guidelines for the options page, results in
developers adopting different styles of options, resulting in
different levels of MultiFP signatures.

MultiFP Performance. Next, after providing a com-
prehensive overview of the number of signatures for each
extension and the strategies employed to collect them, we
compute the exercising time required for MultiFP. Specifi-
cally, we measure the time by computing the number of con-
figurations applied to dynamically exercise the extension and
the time required for the extension’s internal functionality.
On average, the system requires approximately 10 seconds.
This duration represents the time required to apply the con-
figuration and inject the content script, load the page and en-
able the extension to execute its intended functionality, and
the additional overhead of restarting the browser after each
distinct configuration. Figure 5c presents the time distribu-
tion for collecting MultiFP signatures. Approximately 25%
of the extensions can be successfully multi-fingerprinted
within one minute, whereas 50% within 40 minutes. These
extensions typically incorporate straightforward and easily
adjustable options. The top 2% of extensions are more
complicated as they contain more complex options with
multiple potential values. These extensions require up to 2

9

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

E
x
te

n
s
io

n
s
 (

C
D

F
)

Signatures

(a) Extension’s signatures.

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

S
ig

n
a
tu

re
s

Options size

(b) Signatures & options’s size

 0

 0.25

 0.5

 0.75

 1

 0 0.5 1 1.5 2

E
x
te

n
s
io

n
s
 (

C
D

F
)

Exercising time (hours)

(c) MultiFP exercising time.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 60 70 80 90 100

E
x
te

n
s
io

n
s
 (

C
D

F
)

Anonymity set reduction (%)

(d) Anonymity set reduction.

Figure 5: Figure 5a illustrates the number of MultiFP signatures found for each extension, Figure 5b presents a breakdown
of the number of MultiFP signatures for each option size, Figure 5c presents the total MultiFP training time while Figure 5d,
illustrates the Anonymity set reduction within each extension’s user base.

hours of automated testing to trigger the desired behaviors
and extract the corresponding signatures. Overall, we find
that Hecate is efficient and can multi-fingerprint extensions
within a practical timeframe. We note that this testing is
done offline and only needs to be repeated whenever an
extension is updated.

Anonymity Set Reduction. After analyzing MultiFP’s
characteristics, we explore its effectiveness in reducing the
anonymity set within a given extension’s user base. Fig-
ure 5d presents the reduction in extensions’ anonymity
sets (for simplicity we assume a uniform distribution of
configurations). Nearly 50% of the extensions decrease their
anonymity set by 50% indicating that these extensions ex-
hibit a single additional signature that reduces the anonymity
set by half. Furthermore, almost 30% of the extensions
achieve more considerable reductions, ranging from 50% to
80%. For the remaining 15%, the reduction exceeds 90%,
representing extensions with larger number of signatures
and varying sizes of user bases. These results highlight the
effectiveness of MultiFP, particularly for extensions with
a large user base, since attackers can utilize MultiFP to
reduce the anonymity sets of users of the same extension.
In practice, the reduction in entropy may not be uniformly
distributed across all anonymity sets and can vary; in that
case, while for certain configurations the added entropy will
be lower, for the remaining it will be higher.

Missed Extensions. Up to this point our focus has
been on exploring the multi-fingerprintability of previously-
fingerprintable extensions. This subset was extracted from
17,375 extensions, and represented extensions that were
fingerprintable using state-of-the-art techniques [21] on all
datasets. However, out of the total dataset, there are still
44,376 extensions that prior work could not fingerprint. This
means that they did not have any signature or, if they did, it
was common with other extensions and it was not possible
to uniquely identify them. To evaluate Hecate’s efficiency,
we focus on this dataset with two objectives: (i) triggering
extensions that were not fingerprintable, and (ii) resolving
conflicting signatures. Using Hecate, we extract 1,717 ex-
tensions that employ Ext-Storage. We also conduct the same
analysis as before to classify the options-sizes, and observe
a comparable distribution.

For our evaluation, we apply the same MultiFP tech-
niques to effectively activate the extensions through their
configurations. In total, Hecate is able to detect 88 additional
extensions that were not fingerprintable by prior work [21].
Specifically, 21 extensions were detectable but their signa-
tures were not unique due to collisions. The extracted signa-
tures from these extensions often conflicted with each other
due to shared libraries among developers or similar behav-
iors, whether intentional or unintentional. We observe that
by using MultiFP, we successfully resolve a subset of these
collisions. This was achieved by fuzzing configurations and
through dynamic exercising, which directly modified the
extension’s signature. Example configurations include the
activation of a setting (e.g., enable-data:true) and the
modification of default values that are directly reflected in
the signature.

Similarly, Hecate was able to trigger the functionality of
the remaining 67 newly detected extensions. These exten-
sions required a modification in their default options page
to initiate their functionality. This functionality includes
script injections or modifications of the appearance of the
page, which is a typical behavior triggered through MultiFP.
Regarding the number of signatures, since a portion of the
extensions did not have an initial signature, we find that
≈ 30% of them have between 2 and 10 additional signa-
tures, which could further increase with more exhaustive
configuration testing.

User study. After analyzing and evaluating the char-
acteristics and capabilities of Hecate’s multi-fingerprinting,
we aim to investigate whether real users personalize their
extensions and how this impacts their fingerprintability.
Prior to collecting any user data, we submitted a proposal to
our institution’s IRB detailing our intended data collection
process and overall study’s goals. After our proposal was
evaluated and accepted, we conducted two separate studies;
a larger one with participants recruited through the Amazon
Mechanical Turk platform, and a smaller scale pilot study
with colleagues and collaborators. Our studies require users
to install an extension that retrieves the list of installed
extensions, which we use as ground truth. We also deploy a
website that incorporates Hecate’s honeypage for generating
and collecting fingerprints. When users visit our website,
they are instructed to download our extension and, upon suc-

10

TABLE 3: Detailed option customization for the Dark
Reader extension for the 12 participants sharing the ex-
tension. The RGB value denotes the value defined in the
page’s attribute after user customization, and the actual color
represents the resulting color.

User ID RGB Value Actual Color
1 (79, 79, 6)
2 (102, 102, 64)
3 (125, 125, 64)
4 (128, 128, 128)
5 (156, 156, 64)
6 (163, 159, 78)
7 (153, 153, 0)
8 (122, 122, 0)
9 (66, 66, 3)
10 (89, 89, 45)
11 (112, 112, 45)
12 (115, 115, 115)

cessful installation, are redirected to the honeypage where
their fingerprints are collected. To match the fingerprint of
each extension when users install multiple extensions, we
utilize the technique introduced by Chronos, which extracts
multiple extension fingerprints from the same user. We
employ pseudorandom identifiers for each user, and only
collect the list of installed extensions and the generated
fingerprints.

Overall, 375 users participated in our study with a total
number of 879 unique installed extensions. On average,
users have ≈7 extensions installed in their browsers, and
the most popular were Tampermonkey, Mturk Suite, and
PandaCrazy Max which are typical extensions installed by
Mturk users. Importantly, 96 users (≈ 25%) are uniquely
fingerprintable by Hecate. These users exhibit a higher
average number of installed extensions (9), with the majority
(98%) being uniquely identifiable by a single fingerprintable
extension within their set. We note that while participants
commonly install MTurk and survey management exten-
sions, this does not otherwise affect the overall set of
installed extensions. Each user customizes their extensions
based on personal preferences, resulting in a diverse set of
extensions, configurations and fingerprints across users.

Regarding extension personalization, we found that 12
users had installed the popular extension Dark Reader,
which offers multiple configuration settings. Notably, all of
the users exhibited unique extension fingerprints, reflecting
the diverse nature of extension personalization. This ver-
ifies that users do personalize their extensions, and such
customization can be directly reflected in an extension’s
signature, which effectively reduces its anonymity set.

Table 3 presents the 12 different extension customiza-
tions applied by the study participants and the resulting color
used to change the background of the page. Specifically, the
Dark Reader extension injects a unique attribute element
into the page that customizes the background whenever
users adjust the extension’s options. When users activate

the extension it directly sets the background to black. Users
can further customize it using attributes such as Brightness,
Contrast, Sepia, and Grayscale, each with different values.
The unique combination of these options results in a distinct
RGB color that the extension utilizes to modify the page’s
dark background accordingly. We note that, despite some
colors appearing similar, their RGB representations differ,
resulting in distinct signatures. This behavior highlights that
even minor or seemingly similar customizations lead to
different signatures.

To further quantify the anonymity set reduction across
different option sizes, we conducted an additional study. We
invited 10 participants to install four different extensions,
two of which offer multiple options and configuration values
(over 10), and two with a smaller number of options (less
than 5). We instructed participants to use the extensions for
one week, become familiarized with them by using them on
various websites, and customize their settings according to
their personal preferences. After one week, the users revis-
ited our study website. For the first set of extensions with
multiple options, all users customized them accordingly,
resulting in unique fingerprints that reflected the diverse
configurations within the signatures. For the second set, we
observed that even though users customized the extensions,
their fingerprints reflected the limited options and led to
fingeprinting collisions. Specifically, for the extension that
only offered three predefined options to choose from, we
observed that none of the user’s fingerprints were unique.
Nonetheless, the extension’s anonymity set was effectively
reduced, allowing an attacker to target a smaller group of
users who applied specific options. These results demon-
strate that MultiFP does augment the overall effectiveness
of extension fingerprinting and the discriminating power of
each fingerprint.

6. Discussion

Mitigation. Hecate builds upon prior fingerprinting sys-
tems, and employs a mutation observer in the page to con-
tinuously collect extension’s modifications [21]. As detailed
by prior work, traditional DOM fingerpriprinting defenses,
such as the randomization of extension’s modifications [31],
are ineffective against continuous fingerprinting. However,
recently proposed defense mechanisms [32] can directly im-
pact our system by isolating the mutation observer within the
context of the extension, effectively preventing extensions
from being fingerprinted by the web page. Nonetheless, the
concept of multi-fingerprinting could likely be applied to
other behavioral fingerprinting vectors (e.g., CSS-based).

Moreover, our study sheds light on a previously un-
known aspect of extension fingerprinting, highlighting the
inherent tension between customizability and fingerprint-
ability. Extensions operate in a standardized way, and con-
sistently apply user customizations. Any change to this
behavior will directly impacts the extension’s functionality.
Since there is no dedicated mechanism to mitigate the fin-
gerprinting risks posed by personalization, developers must
carefully balance customization and fingerprintability. This

11

is a crucial design decision, as integrating options into the
core logic can significantly modify the extension’s intended
behavior. Developers and users alike must decide whether
the gain in user experience that comes with multiple con-
figurable extension options, justifies the potential reduction
in privacy. Our results can guide developers in adopting
better practices, while also encouraging browser vendors to
strengthen their defenses against extension fingerprinting.

Manifest V3. The extension ecosystem is currently in
transition due to Google Chrome’s enforcement of Manifest
version 3, which introduces additional security measures.
Specifically, developers can define the page’s frames and
the origins where content-scripts are permitted to execute.
This level of granularity is achieved through new Manifest
properties and the addition of the Content Security Policy.
However, despite these significant security enhancements
that isolate the content-script, extension fingerprinting is not
impacted, as extensions continue to operate within the web
page, allowing their modifications to be fingerprinted.

7. Related Work

As browser fingerprinting has become a popular stateless
tracking technique, a large body of works has studied its
prevalence and feasibility and alternate applications [33],
[34], [35], [36], [37], [2], [38], [39], [40], [41], [42]. Ad-
ditionally, numerous studies have explored the dynamics
and evolution of browser fingerprinting in realistic deploy-
ments [43], [44], [45]. More recently, extension fingerprint-
ing has generated interest in both industry and academia
as an additional fingerprinting vector that detects users’
extensions and tracks them accordingly. Different techniques
have been proposed, including using their metadata [3], [46],
[47], [48], and the modifications that they introduce to the
page [6], [4], [5], [21], [49]. Sanchez-Rola et al. [47], in-
troduced a side-channel attack that identifies browser exten-
sions with high accuracy. Their approach involves sending
a request to unavailable extension resources and logging the
response time to infer the presence of the extension. Vari-
ous studies have also proposed techniques for detecting an
extension’s resources, known as Web Accessible Resources
(WARs) [3], [50]. The presence of specific WARs can be
used to infer the presence of extensions. However, for these
attacks, browser vendors and the community have proposed
defenses that are actively under adoption [51], [52], [53],
[54], [55], [25].

Regarding behavioral extension fingerprinting, one of
the first studies [4], showed that extensions exhibit unique
behaviors in the way that they modify the page, while this
behavior can be collected to create the extensions behavioral
DOM fingerprints. In the same direction, Karami et al. [5]
developed a system (Carnus) that automatically generates
behavioral signatures by collecting all the modifications in
the DOM and the communication messages between the
extension, the page and external resources.

Moreover, Solomos et al. [49] explored the fingerprint-
ability of extensions triggered through user interactions.

Specifically, they designed a framework that emulates realis-
tic user interactions on the page and fingerprinted extensions
that required such interactions. In the most recent DOM
fingerprinting study [21], the authors designed a system that
generates extension fingerprints based on continuous DOM
modifications. Their system was able to detect additional be-
haviors of extensions that perform ephemeral modifications
to the page, which other systems could not detect. Finally,
Laperdrix et al. [6], proposed fingerprinting technique based
on the cascading style sheets (CSS) extensions inject, and
detected extensions that were missed by prior fingerprinting
systems.

As extension fingerprinting techniques have become
more advanced, browser vendors and the research commu-
nity have developed defenses to limit their effectiveness.
Trickel et al. [55] introduced CloakX, a system that pre-
vents DOM fingerprinting. CloakX focuses on the exten-
sion’s injections and randomizes the injected elements. This
approach introduces noise to the page and attackers cannot
accurately collect the DOM modifications and fingerprint the
extensions. In a recent work, Karami et al. [32] proposed a
system that prevents DOM-based fingerprinting by creating
a separate DOM only accessible to extensions.

8. Conclusion

Extension fingerprinting has garnered the attention of the
security and privacy community while also seeing extensive
real-world deployment. All prior work treated extension
fingerprinting as set of binary inference tasks, where each
extension is either installed or not. In this work we chal-
lenged this notion and demonstrated that extension finger-
printing should be treated as a multi-modal inference task,
as extensions exhibit diverse behaviors and characteristics
based on users’ preferences and configuration (i.e., person-
alization). To that end, we developed Hecate and extensively
explored multi-fingerprinting, which relies on triggering and
capturing configurable extension behaviors and features.
Consequently, prior and future extension fingerprinting sys-
tems can integrate our techniques so as to truly capture
extension’s diverging behaviors, and maximize the entropy
offered by extension fingerprints. Finally, we emphasized
the importance for extension developers to adhere to best
practices in extension customization and browser vendors
to adopt additional privacy protections for extension finger-
printing.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable feedback. This work was supported by the
National Science Foundation under grants CNS-1941617,
CNS-2211574, CNS-2211575, and CNS-2143363, as well
as the Army Research Office (ARO) under grant W911NF-
24-1-0051. Any opinions, findings, conclusions, or recom-
mendations expressed herein are those of the authors, and
do not necessarily reflect those of the NSF or the ARO.

12

References

[1] Jon Martindale, “The best chatgpt chrome extensions to bring
ai to your browse,” https://www.digitaltrends.com/computing/
best-chatgpt-chrome-extensions/, 2023.

[2] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 878–894.

[3] A. Sjösten, S. Van Acker, and A. Sabelfeld, “Discovering browser
extensions via web accessible resources,” in Proceedings of the
Seventh ACM on Conference on Data and Application Security and
Privacy, 2017, pp. 329–336.

[4] O. Starov and N. Nikiforakis, “Xhound: Quantifying the fingerprint-
ability of browser extensions,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 941–956.

[5] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: Exploring the
privacy threats of browser extension fingerprinting,” in Proceedings of
the Symposium on Network and Distributed System Security (NDSS),
2020.

[6] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis,
“Fingerprinting in style: Detecting browser extensions via injected
style sheets,” in 30th {USENIX} Security Symposium ({USENIX}
Security 21), 2021.

[7] Karl Hughes, “FingerprintJS - Empowering developers to
solve fraud at the source,” 2021, https://fingerprintjs.com/blog/
browser-fingerprinting-privacy/.

[8] A. Nisenoff, A. Borem, M. Pickering, G. Nakanishi, M. Thumpasery,
and B. Ur, “Defining” broken”: User experiences and remediation
tactics when {Ad-Blocking} or {Tracking-Protection} tools break a
{Website’s} user experience,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 3619–3636.

[9] Google Chrome Developers, “Messaging api - google chrome
extensions,” https://developer.chrome.com/docs/extensions/reference/
messaging/, 2023.

[10] G. C. Developers. (2023) Runtime api - google chrome extensions.
https://developer.chrome.com/docs/extensions/reference/runtime/.

[11] Google Chrome Developers, “Migrate to manifest v3,” https://
developer.chrome.com/docs/extensions/migrating/, 2024.

[12] G. C. Developers, “Migrating to service workers,” https://developer.
chrome.com/docs/extensions/migrating/to-service-workers/, 2024.

[13] Google Chrome Developers, “Storage - google chrome extensions,”
https://developer.chrome.com/docs/extensions/reference/storage/,
2023.

[14] G. C. Developers, “Chrome storage examples,” https://developer.
chrome.com/docs/extensions/reference/storage/#examples, 2023.

[15] M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis, and
J. Polakis, “Reaper: real-time app analysis for augmenting the android
permission system,” in Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, 2019, pp. 37–48.

[16] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda,
“Curiousdroid: automated user interface interaction for android appli-
cation analysis sandboxes,” in Financial Cryptography and Data Se-
curity: 20th International Conference, FC 2016, Christ Church, Bar-
bados, February 22–26, 2016, Revised Selected Papers 20. Springer,
2017, pp. 231–249.

[17] “js-beautify,” https://pypi.org/project/jsbeautifier/, 2009.

[18] “Esprima - ECMA Script parsing infrastructure for multipurpose
analysis,” https://esprima.org/, 2024.

[19] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan
revisited, revisited: why and how you should (still) use dbscan,” ACM
Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21,
2017.

[20] K. R. Shahapure and C. Nicholas, “Cluster quality analysis using
silhouette score,” in 2020 IEEE 7th international conference on data
science and advanced analytics (DSAA). IEEE, 2020, pp. 747–748.

[21] K. Solomos, P. Ilia, N. Nikiforakis, and J. Polakis, “Escaping the
confines of time: Continuous browser extension fingerprinting through
ephemeral modifications,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’22.

[22] W3C, “Mutation event types,” 2000, https://
www.w3.org/TR/DOM-Level-2-Events/events.html#
Events-eventgroupings-mutationevents.

[23] Selenium, “Selenium is a suite of tools for automating web browsers.”
2023, https://www.selenium.dev/.

[24] “PyAutoGUI : cross-platform GUI automation Python module.” 2024,
https://pyautogui.readthedocs.io/en/latest.

[25] S. Karami, F. Kalantari, M. Zaeifi, X. J. Maso, E. Trickel,
P. Ilia, Y. Shoshitaishvili, A. Doupé, and J. Polakis, “Unleash
the simulacrum: Shifting browser realities for robust {Extension-
Fingerprinting} prevention,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 735–752.

[26] Scikit-learn developers, “scikit-learn Machine Learning in Python.”
2024, https://scikit-learn.org/stable/.

[27] “PyPI JSON API client library.” https://pypi.org/project/pypi-json/,
2024.

[28] Docker, “Accelerate how you build, share, and run modern applica-
tions.” 2023, https://www.docker.com/.

[29] “Flask is a web framework, it’s a python module that lets you develop
web applications easily.” https://flask.palletsprojects.com/en/2.3.x/,
2010–present.

[30] I. Sysoev, “Nginx,” https://nginx.org/, 2004–present.

[31] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and
A. Doupé, “Everyone is different: Client-side diversification for
defending against extension fingerprinting,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1679–1696. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/trickel

[32] S. Karami, F. Kalantari, M. Zaeifi, X. J. Maso, E. Trickel, P. Ilia,
Y. Shoshitaishvili, A. Doupé, and J. Polakis, “Unleash the simu-
lacrum: Shifting browser realities for robust extension-fingerprinting
prevention,” in 31th {USENIX} Security Symposium ({USENIX}
Security 22), 2022.

[33] P. Eckersley, “How unique is your web browser?” in Proceedings of
the 10th International Conference on Privacy Enhancing Technolo-
gies, ser. PETS’10, 2010.

[34] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
HTML5,” in Proceedings of W2SP 2012, May 2012.

[35] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser,
E. Weippl, and F. Wien, “Fast and reliable browser identification with
javascript engine fingerprinting,” in Web 2.0 Workshop on Security
and Privacy (W2SP), vol. 5, 2013.

[36] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel, “Fpdetective: dusting the web for fingerprinters,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 1129–1140.

[37] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of ACM CCS 2016, 2016.

[38] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting,” in IEEE Symposium on Security and
Privacy, 2013, pp. 541–555.

[39] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd:
an analysis of the effectiveness of browser fingerprinting at large
scale,” in Proceedings of the 2018 world wide web conference, 2018,
pp. 309–318.

13

https://www.digitaltrends.com/computing/best-chatgpt-chrome-extensions/
https://www.digitaltrends.com/computing/best-chatgpt-chrome-extensions/
https://fingerprintjs.com/blog/browser-fingerprinting-privacy/
https://fingerprintjs.com/blog/browser-fingerprinting-privacy/
https://developer.chrome.com/docs/extensions/reference/messaging/
https://developer.chrome.com/docs/extensions/reference/messaging/
https://developer.chrome.com/docs/extensions/reference/runtime/
https://developer.chrome.com/docs/extensions/migrating/
https://developer.chrome.com/docs/extensions/migrating/
https://developer.chrome.com/docs/extensions/migrating/to-service-workers/
https://developer.chrome.com/docs/extensions/migrating/to-service-workers/
https://developer.chrome.com/docs/extensions/reference/storage/
https://developer.chrome.com/docs/extensions/reference/storage/#examples
https://developer.chrome.com/docs/extensions/reference/storage/#examples
https://pypi.org/project/jsbeautifier/
https://esprima.org/
https://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-mutationevents
https://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-mutationevents
https://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-mutationevents
https://www.selenium.dev/
https://pyautogui.readthedocs.io/en/latest
https://scikit-learn.org/stable/
https://pypi.org/project/pypi-json/
https://www.docker.com/
https://flask.palletsprojects.com/en/2.3.x/
https://nginx.org/
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel

[40] A. Durey, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-
redemption: Studying browser fingerprinting adoption for the sake
of web security,” in Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA), 2021.

[41] X. Lin, F. Araujo, T. Taylor, J. Jang, and J. Polakis, “Fashion
faux pas: Implicit stylistic fingerprints for bypassing browsers’ anti-
fingerprinting defenses,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023, pp. 987–1004.

[42] X. Lin, P. Ilia, S. Solanki, and J. Polakis, “Phish in sheep’s clothing:
Exploring the authentication pitfalls of browser fingerprinting,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1651–1668.

[43] S. Wu, P. Sun, Y. Zhao, and Y. Cao, “Him of many faces: Char-
acterizing billion-scale adversarial and benign browser fingerprints
on commercial websites,” in 30th Annual Network and Distributed
System Security Symposium, NDSS, 2023.

[44] S. Li and Y. Cao, “Who touched my browser fingerprint? a large-
scale measurement study and classification of fingerprint dynamics,”
in Proceedings of the ACM Internet Measurement Conference, 2020,
pp. 370–385.

[45] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-stalker:
Tracking browser fingerprint evolutions,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 728–741.

[46] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis, “Un-
necessarily identifiable: Quantifying the fingerprintability of browser
extensions due to bloat,” in The World Wide Web Conference, 2019,
pp. 3244–3250.

[47] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Extension Breakdown:
Security Analysis of Browsers Extension Resources Control Policies,”
in Proceedings of the 26rd USENIX Security Symposium (USENIX
Security), August 2017.

[48] T. Van Goethem and W. Joosen, “One side-channel to bring them
all and in the darkness bind them: Associating isolated browsing
sessions,” in 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[49] K. Solomos, P. Ilia, S. Karami, N. Nikiforakis, and J. Polakis, “The
dangers of human touch: Fingerprinting browser extensions through
user actions,” in 31th {USENIX} Security Symposium ({USENIX}
Security 22), 2022.

[50] G. G. Gulyas, D. F. Somé, N. Bielova, and C. Castelluccia, “To
extend or not to extend: on the uniqueness of browser extensions
and web logins,” in Proceedings of the 2018 Workshop on Privacy in
the Electronic Society. ACM, 2018, pp. 14–27.

[51] G. C. Developers, “Manifest - web accessible resources,”
https://developer.chrome.com/docs/extensions/reference/manifest/
web-accessible-resources, 2023.

[52] Chrome, “Manifest - web accessible resources,” https:
//developer.chrome.com/docs/extensions/mv3/manifest/web
accessible resources/, 2024.

[53] Firefox, “web accessible resources,” https://developer.mozilla.org/
en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web
accessible resources, 2023.

[54] A. Sjösten, S. Van Acker, P. Picazo-Sanchez, and A. Sabelfeld, “Latex
gloves: Protecting browser extensions from probing and revelation
attacks,” in 26th Annual Network and Distributed System Security
Symposium. The Internet Society, 2019.

[55] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé,
“Everyone is different: Client-side diversification for defending
against extension fingerprinting.” in USENIX Security Symposium,
2019, pp. 1679–1696.

14

https://developer.chrome.com/docs/extensions/reference/manifest/web-accessible-resources
https://developer.chrome.com/docs/extensions/reference/manifest/web-accessible-resources
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources

	Introduction
	Background and Threat Model
	System design
	Preprocessing Phase
	Fingerprinting Phase

	Framework Implementation
	Evaluation
	Extension Options Characteristics
	Multi Fingerprinting

	Discussion
	Related Work
	Conclusion
	References

