
Ready or Not, Here I Come: Characterizing the
Security of Prematurely-public Web Applications

Brian Kondracki
Stony Brook University

bkondracki@cs.stonybrook.edu

Michael Ferdman
Stony Brook University

mferdman@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

Abstract—Traditionally, the creation of a new web endpoint
was seen as a private event, with its existence unknown to the
outside world until deemed appropriate by the site owner. Indeed,
the improbability of an attacker correctly predicting the exact
address of a newly-created site allowed administrators sufficient
time to configure their sites before users began to arrive. However,
since the adoption of Certificate Transparency (CT), the act of
obtaining a TLS certificate is announced to the public, where
attackers can lie in wait for new targets to attack. This results in
a new vulnerability period between the time that a site is issued a
TLS certificate, and the time when administrators have finalized
all security-related server configurations.

In this paper, we present MAKO, a distributed web scanning
system that determines the overall security posture of a host
from a number of network vantage points. Using MAKO, we
randomly sample 1% of all domains appearing on Certificate
Transparency logs over 10 weeks, resulting in the auditing of
548,238 unique domains. By carefully and ethically analyzing
the security posture of each host immediately upon discovery,
as well as in the following hours to days, we are able to
observe the change in their security posture over this time
period and quantify the vulnerability window that attackers could
exploit. Through this analysis, we discover 200,421 domains that
increase their security posture in the time following their initial
announcement on Certificate Transparency. Overall, our findings
expose a downside of the Certificate Transparency system, where
unknowing administrators prematurely announce the existence
of their hosts before vital security measures are applied.

I. INTRODUCTION

The modern web heavily relies on the integrity and confi-
dentiality guarantees of the HTTPS protocol. Today, adoption
of HTTPS is higher than ever before, with over 79% of
all websites utilizing it [1]. As a result, the creation and
installation of TLS certificates has become a common, yet
vital, step in the setup of a new website. Tools such as the
Let’s Encrypt Certbot [2] and Digicert’s Certcentral [3] allow
administrators to include certificate creation in their develop-
ment workflows. Additionally, all-in-one web server software
such as the Caddy Server [4] further simplify the process
of deploying a web service by automatically generating and
installing TLS certificates upon launch.

However, the seemingly benign action of creating a TLS
certificate can have negative repercussions. Unlike other steps
in the creation of an online service, such as host acquisition,
the creation of a TLS certificate is a uniquely public action due
to the Certificate Transparency (CT) system [5]. Any time a
certificate is created or updated, an entry is appended to one or

more public log files in nearly real-time. Due to the ubiquitous
nature of the HTTPS protocol, these logs effectively serve as
public announcements of all newly-created websites as they
come online.

Prior work has characterized the volume and nature of traffic
directed towards domains after the creation of TLS certifi-
cates [6]. The authors discovered that newly-created websites
should expect requests from bots analyzing CT logs in as little
as 12 seconds. Moreover, prior work found that a subset of
these bots are malicious in nature, attempting actions such as
data exfiltration, fingerprinting, and vulnerability exploitation.
Overall, these findings highlight the need for website admin-
istrators to ensure that all security-related measures are in
place before creating a TLS certificate. However, it is currently
unclear what the security posture is of web hosts at the time
their certificates are created.

While prior work has thoroughly explored overall trends
in security posture among established websites [7]–[10], these
rely on the assumption of a steady-state in the level of security
of web hosts. However, it is likely that the resilience to attack
of any particular online host will change in the hours or days
after initial deployment. This includes server-side changes,
such as, the configuration of network firewalls and content-
based changes such as the enabling of access-control measures.
Instances where administrators create TLS certificates prior
to enabling these security measures provide attackers with
a window of opportunity to exploit vulnerabilities on these
sites before they become hardened to attack. Meanwhile,
administrators may assume these vulnerable endpoints to be
safe from attack due to a false sense of security derived from
an endpoint’s seemingly unguessable name or address. Thus,
prompt scanning of domains appearing on CT logs can provide
attackers with an additional pool of exploitable targets.

In this paper, we seek to fill the knowledge gap on this
vulnerability window by quantifying the delta in the security
posture of sites in the hours to days after TLS certificate
creation. To do this, we develop MAKO, a web host security
auditing system capable of quantifying the security posture
of a networked host using a series of non-intrusive probes
targeting various levels of the network stack. By conducting
audit scans on domains sourced from CT logs, we can measure
the security posture of sites on the Internet the moment they
are publicly announced to the world. We then revisit these
same sites periodically in the hours to days following their

initial announcement, noting the delta in security posture over
this interval.

Over the course of 10 weeks, we analyzed 548,238 unique
domains, visiting each one four times over the week following
its first appearance on a CT log, resulting in 2,347,840 total
audit scans. By analyzing our curated dataset, we observed
200,421 hosts that improve their security posture in this time
(i.e., their administrators were not done securing their hosts
when their endpoints were announced on CT). For instance,
we found 124,307 hosts that allowed direct access to sensitive
network services such as SSH and database servers at first
announcement, before closing these ports at a later time.
Cases such as these demonstrate severe vulnerabilities that can
arise from network administrators that create TLS certificates
prematurely, without realizing the unintended side-effect of the
CT system–the announcement of previously-hidden hosts and
endpoints.

Our main contributions are as follows:
• We design and implement MAKO, a web host security

auditing system that utilizes repeated scans with non-
intrusive network probes to quantify the security-posture
delta of sites over time.

• Using MAKO, we curate a dataset of web host security
posture changes post TLS certificate creation. We draw
attention to the new vulnerability window between the
creation of a TLS certificate and the time it is hardened.

• Through a series of case studies, we demonstrate a dearth
in knowledge amongst network administrators on the
nature of the CT system, and the invisible side effects
of obtaining TLS certificates.

II. MOTIVATION & BACKGROUND

Certificate Transparency
In the early 2010s, a series of Certificate Authority compro-
mises led to the creation of TLS certificates for unauthorized
entities [11]–[14]. These events resulted in the exploitation of
many users through man-in-the-middle-attacks. In response to
these events, the Certificate Transparency (CT) system was
created to provide oversight into the actions of certificate
authorities. This system is a series of public append-only logs
of certificate creations, allowing the public to audit the actions
of CAs, and for domain owners to monitor invalid certificate
creations for their domains.

Most CT logs are managed by large organizations, although
anyone can create a CT log and advertise its contents to the
public. Similarly, submissions to CT logs can be made by any-
one, but this process is typically done by CAs when creating
a certificate for an entity. Each time a certificate is submitted
to a CT log, the log provider returns a Signed Certificate
Timestamp (SCT), which is then appended to the relevant
certificate and used to validate the certificate’s inclusion in
a CT log. Participation in the CT system is enforced by web
browsers, many of which require all certificates to possess an
SCT, else the certificate will be treated as invalid [15]–[17].
This has resulted in over 90% of all CAs logging certificate
creations to CT [18].

Time

1. Web host

acquisition

2. Domain

registration

4. Website

setup

3. TLS Certificate

creation

6. Launch

site

5. Security

hardening

Pre-CT Post-CT

Vulnerability Window

Fig. 1: The introduction of the Certificate Transparency (CT) system
has introduced a vulnerability window for sites that prematurely
create TLS certificates. Prior to CT, a new domain became public
at the discretion of the site owner. This announcement now occurs
the moment a certificate is created for a domain.

Auditing of CT logs can be easily accomplished through
the use of readily-available APIs [19]–[21], allowing anyone
to participate in the detection of invalid CA activity. However,
the proliferation of the HTTPS protocol on the web [22], along
with the almost total CA logging compliance, has resulted in
these APIs providing a stream of almost all newly-created do-
mains in real-time. This also includes Fully Qualified Domain
Names (FQDNs) that would otherwise not have ever been
discovered through traditional IP address crawling or domain
guessing (e.g., 123abbf86.example.com), and top-level domain
names (TLDs) from registries that do not share zone records
with the public (e.g., country code TLDs).

CT has fundamentally changed the processes of creating a
new website, illustrated in Figure 1. In the past, conventional
wisdom suggested that a newly-created domain was unknown
to the world, and thus, would not receive traffic until the site
owner announces its existence in some way (e.g., advertising
URLs). This allowed administrators the time to finalize the
setup of web content as well as security hardening of the
web server itself, before the new endpoint became known
to the public. However, CT’s logging of all TLS certificates,
and the domains associated with those certificates, has shifted
the true announcement of a new web endpoint to when its
TLS certificate is generated. This has introduced a temporal
gap between the perceived announcement time and the actual
announcement time for a newly-created domain. Any vulnera-
bility in the defenses of a web host that would be fixed prior to
the perceived announcement time of the site can be exploited
by attackers simply scanning CT logs for targets. The size of
this vulnerability window, and the severity of vulnerabilities
available to attackers however, is currently unknown.
Web Host Scanning
The ability to analyze web hosts and quantify their proper-
ties is invaluable to help understand the web’s trends and
weaknesses. Popular tools such as Nmap [23] and Zmap [24]
allow users to identify the network configuration of a host and
even the services executing on it. Furthermore, SDKs such as
Python’s Selenium [25] library allow users to create automated
scanning scripts that utilize a real web browser to interact with
web servers. Generally, automated browsing services such as
these are referred to as “crawlers” or “bots”.

Host scanning tools range in functionality, with the choice
to use one over another being made based on the desired

123abbf86.example.com

host information and constraints. The aforementioned Nmap
is popular for its “quiet” operation, utilizing TCP probes to
determine if a network port is publicly-accessible based on the
response received. Meanwhile, comprehensive security tools,
such as vulnerablilty scanners [26]–[28], provide detailed
reports on the security posture of a website with a tradeoff of
heavy request volume transmitted to the target host, potentially
leading to detection and blocklisting.

Today, there are many services that provide data on
Internet-wide trends through the use of host scanning. For
instance, Censys [29] regularly conducts scans across the
entire IPv4 space for the purpose of threat detection. Similarly,
Shodan [30] provides a search engine of Internet-connected
devices with data sourced from Internet crawlers.

It is also common for malicious activities to be performed
using web bots, rather than manual human actions. One of
the most important steps in an attack is target identification
and reconnaissance. By leveraging automated host scanning,
attackers can analyze large numbers of hosts and identify
weaknesses in them. Many tools exist for this purpose, with
one of the most popular being Metasploit [31]. These tools
send a series of pre-crafted payloads that are used to identify
and exploit known vulnerabilities.

III. MAKO: WEB HOST SECURITY AUDITING SYSTEM

To gauge the security posture of network hosts identified
through the analysis of CT logs, we developed MAKO, a
distributed web host security auditing system, illustrated in
Figure 2. MAKO comprises two core components: a producer
node that tails CT logs for candidate domains and worker
nodes that probe each underlying web host. The distributed
nature of MAKO emphasizes scalability as worker nodes can
be freely added or removed to meet the current resource
requirements of the overall system. Moreover, its stateless
design allows for worker nodes to operate independently of
each other, increasing MAKO’s overall throughput.

A. Producer Nodes

Candidate domains are sourced by a producer node tailing
CT logs with the Calidog Certstream API [21]. Due to the mas-
sive volume of certificates appearing on CT logs (10M+ per
day), a variable sampling rate can be applied to limit the num-
ber of domains processed. For each certificate encountered,
only fully-qualified domain names (FQDNs) are processed,
with all wildcard domains discarded. Additionally, each do-
main (and corresponding IP address) is cross-referenced with
a blocklist, allowing administrators the opportunity to opt-out
of scanning. Each remaining domain is pushed onto a queue
to be fetched by a worker node and analyzed.

The orchestration module is responsible for appending do-
mains as they are encountered, and also scheduling re-crawls
of all domains at set frequencies. As we seek to determine
the vulnerability window of new sites as they appear on the
CT logs, we re-crawl each domain at the frequencies of: one
hour after first discovery, one day after first discovery, and

CT Logs Prefiltering

New sites

Postfiltering

1H 1D 1W

Analysis

Orchestration

Database

Workers

Fig. 2: Architecture of MAKO.

one week after first discovery. This results in at least four data
points collected for each discovered domain. Due to MAKO’s
stateless design, it is possible for a domain to be crawled more
than four times if the site regenerates its certificate multiple
times.

B. Worker Nodes

Analysis of each sampled domain is conducted by one of
many worker nodes. Worker nodes are lightweight, with low
resource requirements, allowing for a large number of workers
to execute in tandem on a single machine. Moreover, worker
nodes can be added or removed from the system in real-time
to meet current demand.

1) Network Probes:
MAKO performs several types of network probes for all

discovered sites. These probes seek to identify areas of weak-
ened security posture, ranging from information disclosure to
the use of outdated software vulnerable to public CVEs.

DNS Records
For each domain encountered, we send DNS queries for all
associated A, CAA, and TXT records. Although we record all
responses received from these requests, we designate the first
IP address listed in the domain’s A record as the primary IP
address for that domain, and send all request packets to that
IP for all subsequent probes. Note that, as the worker nodes
are stateless, subsequent visits to the same domain may result
in scans of different IP addresses, if the DNS records for the
domain change between crawls.
Open Ports
To identify potentially sensitive services listening on a web
host, we conduct a limited scan of 20 ports associated with
popular network services (the list of ports and associated
services is presented in Table II of the Appendix). For each
port, we send a single TCP packet over a raw socket and
record the resulting response payload or error code. For ethical
reasons, and to increase the efficiency of MAKO, we do
not attempt any further interaction with any web services
encountered (such as authentication attempts). If a response is
received, the socket is properly closed to free server resources.

Web Application Content
To determine the type of content served by a web server at
the time of certificate creation, along with additional sources
of information leakage, we collect the HTML code of the
document root served by the web server, along with all
returned HTTP headers.

Additionally, to discover hidden directories present on the
web server, we send a series of HTTP GET requests for
common directory names. We construct this list by first scan-
ning the index HTML code, if available, and recording the
top level directory name for all resources listed on the page.
To supplement this, we queried the Github API [32] for the
most common directory names in all repositories that contain
HTML files. This list, along with additional directory names
that are common to popular web applications, resulted in 103
directories to query in each scan (listed in Table IV of the
Appendix).

For each request, we record the HTTP status code of the
response. If a request is successful (i.e., 200 response code),
we analyze the resulting HTML to determine if it is a directory
index page produced by the web server. Such pages are
commonly produced by default by web server software to
make it easy for a user to browse the contents of the web
server’s file system. However this feature is recommended
to be disabled by security experts, as it can reveal hidden
directories containing sensitive information [33]. To determine
if a response contains a directory indexing, we constructed a
list of regular expressions that match the format of directory
indexing pages for popular web server software. We show
these regular expressions in Table III of the Appendix. If a
regular expression matches at least one directory, a boolean
flag is set to “TRUE”, indicating the web server supports
directory indexing at that time.

For all HTTP requests, we include a User-Agent header
randomly-selected from a set of popular modern browsers.
The random seed used to select this User-Agent is tied to
the scanned domain, making all scans to the same domain
use the same User-Agent header. Moreover, we include an
X-Experiment header in all HTTP requests initiated by
MAKO, which includes a link to a project website hosted by
our institution. This website includes detailed information on
the purpose of our study and contact information to direct opt-
out requests.

C. Deployment and Data Collection

Using the described system, we deploy 8 data collection
nodes located in our academic institution’s datacenter, support-
ing a total of 400 MAKO worker processes. Due to the massive
scale of certificate creations, we impose a 1% sampling rate on
domains sourced from the CT logs. That is, for each certificate
log entry encountered on CT, we parse out all FQDNs and
sample from that list (i.e., we apply the sampling rate to the
domains, not certificates).

We take great care in designing MAKO, and the experiments
we perform with it, as to prevent any undue strain on the sites
we analyze. We emphasize that MAKO only requests public

14,000,000

16,000,000

18,000,000

To
ta

l C
T

D
om

ai
ns

2022-07-01 2022-07-15 2022-08-01 2022-08-15
Date

5,000

7,500

10,000

12,500

N
ew

 D
om

ai
ns

 F
ou

nd

Fig. 3: (Top) Total domains appearing on CT logs each day of our
data collection period. (Bottom) Total new unique domains processed
by MAKO post-filtering and sampling.

information from each web host it encounters, and at no point
do our probes attempt to exploit vulnerabilities or gain access
to resources that are not available to any visitor to a site.
Moreover, we limit the number of probes so that the number
of requests MAKO sends is similar to the number of requests
a single user produces when visiting a modern website [34].

IV. EXPERIMENTAL RESULTS

We report the findings of our deployment of MAKO, ana-
lyzing domains appearing on CT for 10 weeks, from June 22,
2022 to August 29, 2022. In total, we conducted 43,005,238
scans of 11,521,071 unique domains. However, CT logs con-
tain entries for not only newly-created TLS certificates, but
also for the renewals of existing TLS certificates. As we are
only interested in the change in security posture of brand-new
websites, we filter established sites from our dataset. To do
this, we utilized the historic CT log database of crt.sh [35]
to determine the earliest recorded TLS certificate for each
domain in our dataset. Specifically, we recorded the timestamp
on which each certificate was created and compared it with
the timestamp of our earliest crawl of that site, discarding all
domains in which a certificate was created at least one day
before our first scan.

In addition to this filtering logic, we also discarded all
domains in which MAKO did not complete the four planned
auditing scans (original scan, followed by three recrawls
described in Section III). These incomplete scans are the result
of domains and network subnets being added to our blocklists
before all visits could be completed. In our dataset, we found
a small number of domains that were scanned by our crawlers
more than four times. This is a result of domains renewing
their TLS certificate multiple times during our data collection
period.

We also remove all domains from our dataset that do not
exhibit any web activity during our data collection period.
Specifically, we first remove all domains in which no DNS
A record is ever available. These domains generally result
from large hosting providers that create temporary VMs for

crt.sh

Fig. 4: Distribution of the number of unique subdomains associated
with each primary domain in our dataset.

10
3

10
4

10
5

Frequency

www
mail

webmail
cpcontacts
cpcalendars

cpanel
webdisk

autodiscover
ftp

Su
bd
om

ai
n

Fig. 5: Most common subdomains associated with TLS certificates
in our dataset.

the purpose of certificate creation, before promptly tearing-
down the VM. Similarly, we remove all domains in which
each crawl shows ports 80 and 443 closed. While these sites
may be hosting content on non-standard ports, we focus our
study on hosts that eventually provide web-based content on
the standard ports.

After applying the previously-described filtering steps, we
are left with a dataset comprising 2,347,840 scans of 548,238
newly-created domains. Figure 3 (top) shows the total number
of domains encountered on the CT logs each day (prior to
filtering and sampling), with Figure 3 (bottom) showing the
number of previously-unseen domains processed by MAKO
on each day of our data collection period (after filtering and
sampling). We observe a consistent number of new domains
each day, with an exception of two spikes in activity at the
beginning and end of our data collection period. Furthermore,
we see an unusual increase in the total number of domains
appearing on the CT logs on July 19, but due to our 1%
sampling rate, this increase does not follow in our filtered
dataset.

Figure 4 shows the distribution of the number of unique
subdomains used in TLS certificates for each primary domain
in our dataset. We find that 94% of all primary domains
encountered created TLS certificates for only one subdomain.
Due to our low sampling rate of the CT logs, we are unlikely
to encounter additional certificate creations for a particular
domain, unless that domain generates TLS certificates at an
abnormally high rate. We see this in our dataset’s outliers,
where large entities, such as cloud and DNS providers, create
TLS certificates for unique subdomains assigned to their
clients.

Fig. 6: Distribution of total IP addresses encountered for each
domain in our dataset.

Figure 5 shows the top 10 most popular subdomains in our
dataset, by the number of unique primary domains in which
the subdomain appears. We find that it is most common for a
domain to not have a subdomain (e.g., example.com). Be-
yond this, we can see the large market share of cPanel in new
website creations. The subdomains webmail, cpcontacts,
cpcalendars, cpanel, webdisk, and autodiscover
are all cPanel Service Domains [36]. These subdomains are
all automatically created when a website is created using
cPanel (the subdomain autodiscover is used by the Mi-
crosoft Outlook and Mozilla Thunderbird email clients to
automatically discover and configure access to domain email
servers [37]).

Additionally, we see potentially sensitive subdomains such
as mail and ftp appear many times during our data col-
lection period. Prior to the existence of CT, an attacker
attempting to discover vulnerable endpoints would need to
correctly predict the presence of these subdomains, generating
noisy network traffic in the process. By simply ingesting CT
logs, attackers can now observe certificates created for such
endpoints and immediately direct probes towards them.

A. Web Host Security Posture Analysis

Using MAKO, we curated an extensive dataset consisting
entirely of newly-created domains. As described in Section III,
worker nodes probe each host from a number of network
vantage points. Below, we share the results of each probe
on the network stack, conducting differential analysis on the
periodic scans of each domain over the hours to days after
initial announcement on CT.

1) DNS Records: As described in Section III-B1, we con-
sider the first IP address listed in each domain’s A record to be
the primary address for that domain, and send all subsequent
probes to that address. Figure 6 shows the number of IP
addresses encountered for each domain in our dataset. Overall,
we find that 75.4% of all domains in our dataset have the
same IP addresses throughout all crawls. Thus, an attacker that
was able to gain access to the server (i.e., through exploiting
a vulnerability or obtaining credentials) when observing a
domain on the CT logs can “lie-in-wait” until the website is
fully online before secretly exfiltrating sensitive information.

2) Port Scan: In support of web content, it is common
for an online host to run other services, such as databases and
mail servers, on auxiliary ports. However, as these services

0.0

0.1

0.2

0.3

0.4
O=26.00%
C=4.50%

21
O=24.92%
C=4.92%

22
O=9.67%
C=8.65%

25
O=9.32%
C=8.42%

26
O=24.80%
C=5.16%

110
O=24.81%
C=5.19%

143
O=0.44%
C=60.76%

194

0 50 100 150
0.0

0.1

0.2

0.3

0.4
O=22.79%
C=5.50%

995

0 50 100 150

O=0.59%
C=44.65%

1433

0 50 100 150

O=19.68%
C=7.83%

3306

0 50 100 150

O=6.05%
C=14.18%

5432

0 50 100 150

O=16.49%
C=5.46%

8080

0 50 100 150

O=2.88%
C=13.69%

8888

0 50 100 150

O=0.46%
C=54.95%

27017

Hours to Port Close

Fig. 7: Distribution of the number of hours it took domains in our dataset to close specified ports. Percentages in top-left corner of each
plot represent the fraction of hosts which initially had the specified port Open when first encountered, and of those, what fraction Closed
that port by the end of our data colelction period.

can be highly sensitive, it is best practice to restrict access to
them from the Internet using network firewalls. As described
in Section III-B1, we conduct a TCP scan on 20 ports
commonly used by sensitive network services. In total, we
found 298,530 unique domains that had at least one sensitive
service (excluding ports 80 and 443) publicly accessible on
our first visit, with an average of 2.3 ports open. Furthermore,
we observed 25,266 domains in which more than half of the
scanned network services are publicly accessible on our first
visit.

Figure 7 shows the percentage of all domains in our dataset
that had one of the recorded sensitive ports publicly accessible
during our first visit to it (O), and the percentage of those that
closed that port at some point in the future (C). We noticed in
our dataset a subset of hosts that appeared to close all scanned
ports by the time of our last crawl. As we cannot be certain if
this change occurred due to the hardening of site security, or
if the host was completely decommissioned, we discard these
hosts from our dataset for this analysis.

Each subplot shows the time distribution when these hosts
closed the particular port. The majority of port closure events
correspond to the three recrawl intervals MAKO schedules for
each encountered domain, but a small number are in between,
or after, these times, where a domain creates a new certificate
in the hours or days after the original. For clarity, we restrict
the axis of these plots to just over a week after first crawl,
though a small fraction of outliers fall outside this range.

Ports for popular services such as FTP (21) and SSH (22)
are the most commonly open among hosts in our dataset, at
26% and 24.9% of all domains having the port open at first
crawl, respectively. However, as these services are utilized
by administrators to remotely manage a website, less than
5% of these hosts close the two ports during the timeframe
of our audit scans. Conversely, less popular, though highly-
sensitive services such as MongoDB (27017) and Microsoft
SQL Server (1433), are initially open by drastically fewer
hosts, but hosts that run these services tend to quickly close
these ports. Any period in which these services are open to

the Internet presents the risk of them falling victim to the
growing number of ransomware targeting NoSQL/SQL Server
databases [38], [39].

We also observed varying behavior among hosts in the time
period in which particular ports are closed. For instance, we
found that port 194, commonly used to host IRC servers, is
closed by 60.76% of hosts, but a majority of hosts that close
this port do so more than a day after certificate creation. On
the other hand, database software PostgreSQL (5432) is closed
by the majority of hosts within the first hour after certificate
creation. While this is significantly faster than other services,
a quick attacker can still inflict substantial damage within the
short timeframe.

Comparing these results to established hosts in our dataset,
allows us to identify differences in behavior between newly-
created websites and those that have been online for a longer
period of time. These hosts, which we filtered from our
dataset using the methodology described earlier, close their
ports much less often during our data collection period than
newly-created sites. For instance, ports 21 and 22 are closed
on approximately 1% of established hosts. Furthermore, ports
for less popular services are also closed less frequently on
established hosts, with MongoDB and Microsoft SQL Server
restricted on only 12% and 3% of hosts, respectively. This
difference in port access changes highlights the fluid nature of
newly-created hosts, which exhibit changes in security posture
in the time after initial creation.

Overall, we find that, administrators neglect to revoke
public access to sensitive services after site creation, and of
those that do, many take hours to days to do so, providing
attackers with ample opportunity to fingerprint and abuse these
unprotected services. Attackers can trivially identify these
sensitive services and compromise them through methods such
as credential brute forcing or vulnerability exploitation. For
this reason, it is of the utmost importance for administrators
to ensure that access to these services is restricted prior to
creating a TLS certificate.

TABLE I: Most common web server software used by sites in our
dataset as determined by the HTTP Server header provided by
each site. We find a large percentage of sites include not only the
web server name, but also version number in the HTTP header. We
identify a subset of these sites as being vulnerable to at least one
CVE.

Server Total Total w/ Version Vulnerable Avg. CVSS

Nginx 104,813 27,522 5,954 6.0
Apache 98,072 23,837 18,750 5.1
Openresty 49,183 4,389 1,152 6.1
Litespeed 32,427 18 0 N/A
Microsoft 5,089 5,085 212 5.0
Other 183,363 32,265 863 6.8

3) Web Server Security: Common among the many avail-
able web server software packages today is the requirement
for users to manually edit certain configuration options to
ensure increased security posture. These include the restriction
of certain file paths through access-control mechanisms, and
tuning of the amount of information regarding the state of
the web server exposed to the user through headers and web
content [40], [41]. Below, we analyze four such configuration
options and the propensity of administrators to neglect to
properly tune each of these options prior to TLS certificate
creation.

Server Version String Leakage
To assist in debugging, it is common for web server software
to include by default an HTTP Server header indicating not
only the name of web server handling the current request, but
also the version number. The inclusion of such information can
lead to serious security weaknesses as an attacker can easily
map vulnerabilities to the specified software version to inflict
harm against the web server. For this reason, it is common
for administrators to remove/sanitize the Server header in
all responses.

During our data collection period, we found 453,546
(82.73%) unique domains that sent an HTTP Server header
in their responses, including 92,524 (16.88%) domains that
also included the entire web server software version string.
Of these, we observed that 62.57% changed their reported
user agent after our first crawl, including those that completely
removed the HTTP Server header from responses.

As leaking the entire version string of a web server through
HTTP Server headers can lead to trivial exploitation by
attackers, we sought to determine the number of these web
servers that were vulnerable to known exploits. We queried
the popular CVE database cvedetails.com for each version
string in our dataset and recorded if that version is vulnerable
to at least one exploit, along with the highest CVE score
listed. In total, we found 26,887 domains in which the listed
web server version was vulnerable to at least one CVE. Of
these, the average CVE Score was 5.0 out of 10. Table I
shows the breakdown of popular web server instances in our
dataset. Table VI in the Appendix shows all the CVEs that we
discovered affecting prematurely-public web applications.

Of these hosts, 9,857 (36.7%) either completely removed the
Server header revealing the vulnerable web server software,
or updated the software to a version that is not associated with
a CVE before our last scan. This corresponds to 8,895 domains
that removed the Server header and 962 that updated the
software. Alarmingly, sites in our dataset were not quick
to resolve this information leakage, with a median time-to-
removal of 1 day. Beyond this window, attackers would miss
36.7% of vulnerable servers that could have been exploited.

To compare the difference in attack surface of new sites
appearing on CT, to sites renewing their certificates, we con-
duct an experiment in which we attempt to analyze the server
headers included in responses from established sites in our
dataset. Specifically, long-lived sites that have had time to fully
secure their infrastructure. To do this, we gathered the hosts we
filtered from our dataset earlier that were found to be renewing
their TLS certificate at the time our discovery (as opposed to
obtaining a certificate for the first time). Moreover, to ensure
we are analyzing only well-established sites, we further filtered
this dataset by keeping only hosts with a primary domain in the
Tranco [42] Top 100K. This left us with a dataset of 1,249,061
total crawls of 264,929 domains.

Of these hosts, we find 176,970 (66.8%) return an HTTP
Server header to requests. Contrary to newly-created sites
however, only 22,397 (8.45%) of these server headers contain a
version number. This is not surprising as established sites have
had the time to fully harden their security posture, including
improving operational security with the removal of version
string leakage.

This does not mean however that all sites have removed
this vulnerability. In this dataset, we find 7,370 (2.8%) sites
that presented version strings for web servers vulnerable to at
least one public CVE. The average score of these CVEs is in
line with our new-site dataset at 6.0 out of 10. Of these hosts,
2,249 were either removed completely, or changed in such a
way that the eventual server version was no longer vulnerable.
These changes occurred with a median-time-to-removal of 24
days. Given the small relative number of sites exhibiting this
behavior in the “established-sites” group (2.2K out of 177K)
we interpet this phenomenon as the result of administrators
updating their software only when they are made aware of
issues, as opposed to the typical online hardening we observed
for websites that came online for the first time.

These results clearly demonstrate the tendency of adminis-
trators to create TLS certificates in the middle of their website
configuration workflows. It is not likely that these websites
were intended to be fully deployed on outdated and vulner-
able web server software. Instead, these administrators used
the outdated software to install/configure the website before
updating software prior to deployment. However, due to a lack
of knowledge of the public nature of CT, TLS certificates were
created for these domains before the underlying web servers
were properly updated and secured.
Directory Access
An important aspect of web server setup is the presence of
access control, restricting the ability of users to request certain

cvedetails.com

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Directories Closed

102

103

104
Fr

eq
ue

nc
y

Fig. 8: Distribution of the ratio of the number of directories in which
each domain revoked access after certificate creation.

resources. An example of this is the .htaccess file of the
Apache web server software [43], which allows for access
control rules to be applied on a per-directory basis. Failure
to properly configure such restrictions can allow attackers to
interact with sensitive parts of a web application, such as
administrator panels or login pages.

In total, we found 172,087 domains that have a change in
the number of accessible directories during our data collection
period, with 76,735 (44.6%) domains decreasing the number
of available directories. Figure 8 shows the distribution of the
ratio of total directories removed in our data collection period.
We observe a bimodal distribution, where a large percentage
of domains remove access to only a handful of directories,
whereas a second cluster of domains remove access to almost
all originally open directories. These changes tend to occur
rapidly, with the majority removing access within an hour of
our first crawl.

Directory Indexes
Another common debugging feature of web server software
is the listing of file system directories when receiving a
GET request for that particular directory. In its intended use,
this feature allows for easy identification of files accessible
through a web server. However, it can also provide attackers
with knowledge of the existence of potentially sensitive files,
greatly increasing their intelligence prior to launching an
attack. To determine a web server’s current support for this
behavior, we use a series of regular expression searches on the
responses to the same requests we transmitted to determine a
web server’s directory access control settings, corresponding
to the structure of directory indexing web pages of the most
popular web server software packages.

In total, we find 26,993 domains that list the contents of at
least one directory during our crawls. Of these, 9,527 (35.3%)
domains removed the support for directory indexing, with this
change occurring a median of 1 day after our first successful
crawl. This finding, along with the domains that lack access-
control measures on web server directories show how attackers
utilizing a system such as MAKO can quickly map a web
server’s file system, and identify sensitive files.

0 25 50 75 100 125 150
Hours to Port Close

0.0

0.2

0.4

0.6

0.8

1.0

21
22

26
194

1433
3306

5432
27017

Fig. 9: Distribution of times in which hosts closed sensitive network
ports during our fine-grained analysis of sites every two hours for a
week.

4) Web Content: We found that 69.3% of all domains in
our dataset return HTML content at some point during our
crawls, with 50.1% returning HTML content on our first crawl
immediately after appearing on CT. To determine the types of
content served at various crawls, we extract the HTML title
tag of each page and cluster based on this value. We then label
these clusters based on the content. In Section VI, we discuss
specific categories of web pages that indicate sensitive content
is being publicly shared by the web server.

V. FINE-GRAINED SECURITY AUDITING

In Section IV, we discovered that websites do indeed
improve their security posture in the hours to days following
certificate creation. This vulnerability window could allow
quick attackers to exploit weaknesses in a site before they are
patched. However, in order for MAKO to be able to scan a large
number of sites and produce generalizable findings, we chose
a coarse-grained recrawling interval, visiting sites one hour,
one day, and one week after original discovery. While this
decision allowed us to observe online changes to the security
posture of sites, it did not allows us to identify with precision
when exactly administrators harden their web applications.

Thus, we conduct a small-scale supplementary experiment,
with a more fine-grained recrawling interval. Specifically, we
utilize the same methodology described in Section III and
randomly sample 2,457 domains from CT logs over a 24 hour
period. MAKO crawled each domain immediately after first
discovery, as well as each every two hours for the subsequent
week, resulting in 84 additional crawls. As this recrawling
interval increases the number of probes directed towards each
target site from MAKO, we limit our measurements to only
open/closed network ports.

Figure 9 shows the distribution of port closures of a subset
of sensitive ports during our weeklong supplementary data
collection period. Overall, we observe varying behavior of
hosts closing sensitive ports, with over half of all analyzed sites

closing these ports over a day after first discovery. Moreover,
we find that hosts are more likely to close ports for sensitive
data providing services, such as 1433 (Microsoft SQL server),
far quicker than other ports, with nearly 75% of all hosts
closing that port within two hours of our first crawl. The
varying behavior observed among hosts in this dataset is due
to both our smaller sample size, as well as the thousands
of different stakeholders (with different practices) involved in
launching new web applications online.

VI. CASE STUDIES

A. Public WordPress Installation Forms

The Internet would not be the same without the open-source
web application WordPress [44]. WordPress is a content-
management system used by 43% of all websites on the
web [45]. It is therefore not surprising that it is a highly
sought-after target for attackers [46], [47], who utilize the
standardized nature of this massively-deployed web applica-
tion to identify and exploit vulnerable installations, including
knowledge on the installation process and locations of version
strings within the web page content.

To appeal to less technically-savvy users, WordPress con-
fines its installation process to a web-based GUI, making
it easy for users to input configuration options such as the
address of their MySQL database and the desired site ad-
ministrator credentials. This significantly lowers the barrier to
entry for users that create their own WordPress sites, likely
contributing to its overwhelming market share. However, this
choice leads to an obvious vulnerability: if proper care is not
taken, the installation process can be hijacked by a quick
attacker that visits the site at the time of installation. This
attack was first demonstrated in 2017, when over four thousand
web application installer pages were discovered by comparing
the HTML of web pages returned from sites appearing on CT
to those of known installers [48].

Using the HTML title tag clustering technique from Sec-
tion IV-A4, we identify 211,880 sites in our dataset that
indicate their use of WordPress through the inclusion of the
string “WordPress” in the HTML title. We note that this is
likely a lower-bound of WordPress sites in our dataset, as some
administrators may wish to remove indications of a site’s use
of a particular web application.

Alarmingly, we found 873 domains that were actively in-
stalling and configuring WordPress at the time of our first
crawl, with these sensitive pages only available for 12 hours
on average, before installation is completed. During this time
period, the sensitive forms used to completely configure the
host site were publicly accessible to any visitor in the hours
after certificate creation, opening a severe vulnerability win-
dow that will not exist for a long time.

We note that while these WordPress installations could have
been abused at the time of their discovery to run arbitrary
server-side code, this is entirely the result of operational errors

on the part of these website administrators, rather than a
vulnerability in the source code of the WordPress application
itself. By the time we analyzed our data to discover this
vulnerability, these sites were no longer vulnerable, hence
there was no reason to contact them.

B. SQL Error Messages

As we showed in Section IV-A4, many sites return server
error messages to GET requests on our first crawl, before these
errors disappear in the subsequent crawls. The implication is
that the site is still in the process of being deployed, with
error messages indicating incomplete configuration. Although
many of these errors messages are inconspicuous, we identify
a set of SQL-based error messages that can reveal sensitive
information regarding the backend database. Again, we utilize
HTML title tag clustering to identify these pages, by first
searching for all titles containing the string “SQL” and then
manually filtering the resulting list to only keep those related
to error messages.

In total, we found 69 domains that returned a SQL error
message to the GET requests during our first crawl. This
can be a highly damaging leakage of information, as these
error messages reveal vital data regarding the structure of the
application’s database, as well as information regarding the
operation of the application itself. For instance, 30 error mes-
sages include the name of the database user that performed the
query. Additionally, these errors include information regarding
how authentication is performed by the database server. Of the
messages that included the database username, 14 state that the
database uses password authentication. With this information,
along with public access to the database server port (seen in
Section IV-A2), an attacker can attempt to brute force access
into the database with a strong starting position.

In addition to authentication information, SQL error mes-
sages can reveal hidden vulnerabilities in the logic of the
application through the leakage of the raw SQL query strings
used to interact with the database. In total, 46 domains in our
dataset returned error messages including a raw SQL query
string. The most egregious example in our dataset is one site
that was running a Laravel PHP web application that had a
connection error to the SQL server. This site returned to the
user a full stack trace revealing a severe vulnerability within
the application logic where a user’s session ID is retrieved
from the database using only the HTTP User-Agent, shown in
Code Listing 1 of the Appendix. We contacted the owner of
this site and disclosed our findings to ensure this vulnerability
is fixed before it can be exploited by attackers. Examples
such as this provide attackers with substantial information on
how to exploit a particular web application. It is important
for administrators to ensure that errors are handled properly
before creating a TLS certificate for their site, to ensure that
sensitive information is not leaked.

C. Vulnerable OpenSSH Servers

In Section IV-A2, we demonstrated the propensity of web
hosts to leave sensitive network services open to the public
upon certificate creation, before revoking access at a later time.
One of the most vital, yet sensitive of these services is SSH,
located on port 22 by default. By connecting to an SSH server
on a remote host, clients can run commands and manipulate
files as if they were local to the machine. Like many other
network protocols, communication with an SSH server begins
with the server providing the client with a banner displaying
the current version of the SSH protocol supported, and the
underlying SSH server software identifier. While there exists
a number of SSH server software packages available, the most
popular of these is OpenSSH [49], integrated into many of the
most popular operating systems in use today [50].

Using the banners recorded during our port scan probes in
Section IV-A2, we identify all hosts utilizing OpenSSH on
port 22 as well as all versions of OpenSSH installed during
each crawl. In total, we found 155,840 hosts that present an
OpenSSH server to the Internet. Alarmingly, 151,663 (97.3%)
of these hosts utilize a version of OpenSSH that is outdated
and vulnerable to at least one known CVE, with an average
CVE Score of 5.0. In Section VII, we further investigate these
vulnerable servers and find approximately 20% originate from
a single Autonomous System. Of all hosts that are observed
running a vulnerable version of OpenSSH, 16,418 (10.8%)
resolve this vulnerability by either updating the software, or
removing access to port 22 entirely at a later crawl.

VII. DISCUSSION

A. Key Takeaways

Prematurely-public Web Applications: Our results show
that there is a substantial population of websites that, due
to the CT system, announce their existence to the world
before they intended, opening the door for attackers to exploit
vulnerabilities that will only exist for a short period of time.
In total, we observed 200,421 domains that improved their
security posture in the hours to days after the creation of
their TLS certificate. For many domains, severe vulnerabilities
existed in their web infrastructure that could allow attackers
to gain a foothold before all security measures were applied.
Overall, our findings demonstrate the importance for web
administrators to understand the implications of CT and to
ensure that security-related measures are applied prior to
creating a TLS certificate.

Certificate Transparency Volume: Within a 10 week study,
we were able to find tens of thousands of sites vulnerable to
many of the security weaknesses we measured, despite the use
of a 1% sampling rate of domains on CT. The true number
of sites that improve their security posture after creating
a TLS certificate is much larger. As is the case with any
studied security vulnerability, the immense scale of the Internet

provides attackers with hundreds of thousands to millions of
potential targets with weakened security postures immediately
after TLS certificate creation.

CT Education: During the course of our data collection
period, we received a number of emails from concerned
web administrators inquiring how we were able to identify
their newly-created domains as quickly as we did. For each
such request, we provided thorough information regarding the
implications of creating a TLS certificate and the potential
impacts of announcing new domains prior to fully securing
them. These interactions demonstrate the current dearth in
knowledge of the CT system and the false sense of secu-
rity currently assumed by administrators from the perceived
secrecy of newly-created domains and subdomains. It is our
hope that our study can help further educate the community
on the security implications of CT and best security practices
when configuring a new web endpoint.

Privacy-preserving CT: In light of the previously-described
requirement of administrators to be cognizant of the public
nature of TLS certificate creation, researchers have begun to
question the breadth of information required to be logged by
CT for its security guarantees. Proposals for a replacement of
the CT system include the utilization of cryptographic means
to verify a certificate’s validity, rather than logging of the raw
metadata [51], [52]. Removing the raw metadata would take
the onus off of administrators to ensure certificates are only
created when the underlying web server is at its ultimate secu-
rity posture. We encourage the research community to continue
its efforts in developing a privacy-preserving alternative to CT.

Hosting Provider Vulnerabilities: While many of the security
indicators we study in this work can typically be attributed
to the actions of the website admin, such as the improper
configuration of access control methods, we note that some
can be a result of the improper configuration of pre-made
virtual machine templates supported by particular web hosting
providers. For instance, if a hosting provider allows customers
to purchase pre-configured virtual machines containing all web
and database software necessary to launch a web application,
but does not properly maintain such an image to ensure all
software is up-to-date, any vulnerability present in the software
of that image will be deployed en masse by that hosting
provider’s users.

Figure 10 shows the ratio of all hosts that demonstrate weak
security posture in one of the studied categories, for the top
20 most common Autonomous Systems in our dataset. By
comparing an Autonomous System’s overall share of sites
in our dataset (listed in the “Total Sites” column), to its
share of all sites exhibiting a weakened security posture in a
particular category, we can see a number of hosting providers
that disproportionately appear. For example, while the hosting
provider UnifiedLayer makes up only around 5% of hosts
in our dataset, it is responsible for almost 20% of all hosts
that provide access to a vulnerable OpenSSH server. We
therefore note the possibility of temporal vulnerabilities due to

To
ta

l S
ite

s

O
pe

n
Po

rts

Vu
ln

. O
pe

nS
SH

Vu
ln

. W
eb

 S
er

ve
r

D
ir

Ac
ce

ss

Se
tu

p
Pa

ge
s

Er
ro

r P
ag

es

In
de

xi
ng

W
P

In
st

al
l S

ite
s

SQ
L

Er
ro

rs
Security Indicator

Cloudflare
Amazon
Google

UnifiedLayer
Hetzner

Microsoft
OVHcloud

Wix
DigitalOcean
Ddos Guard

Hostinger
Squarespace
Namecheap

Sedo
Bodis-1

Loadedge
Ois1

Network Solutions
Contabo

Linode, llc

A
SN

0.16 0.24 0.00 0.01 0.19 0.45 0.08 0.07 0.08 0.04
0.13 0.03 0.05 0.12 0.09 0.08 0.46 0.02 0.04 0.01
0.06 0.05 0.02 0.02 0.03 0.01 0.02 0.00 0.02 0.01
0.05 0.09 0.19 0.01 0.06 0.02 0.01 0.03 0.08 0.07
0.03 0.04 0.04 0.03 0.02 0.03 0.11 0.04 0.07 0.01
0.03 0.01 0.02 0.00 0.02 0.01 0.01 0.00 0.00 0.00
0.03 0.03 0.05 0.04 0.03 0.02 0.01 0.06 0.04 0.06
0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.02 0.05 0.05 0.01 0.03 0.02 0.01 0.07 0.06
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.02 0.00 0.00 0.02 0.00 0.00 0.06 0.01 0.03
0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.10 0.03 0.09
0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
0.01 0.02 0.00 0.24 0.07 0.00 0.00 0.23 0.00 0.00
0.01 0.02 0.04 0.00 0.01 0.00 0.00 0.00 0.01 0.00
0.01 0.01 0.03 0.00 0.01 0.00 0.00 0.01 0.01 0.01
0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.03 0.02 0.07
0.01 0.01 0.02 0.03 0.01 0.01 0.00 0.01 0.02 0.00

0.0

0.1

0.2

0.3

0.4

Fig. 10: Percentage of unique domains that had a weakened security
posture in each of the studied categories for the top 20 most common
ASNs in our dataset.

outdated pre-made virtual machines and leave a more detailed
exploration of this phenomenon for future work

B. Limitations & Future Work

Our analysis should be considered alongside certain limita-
tions. Due to the significant number of new TLS certificates
created every day, we used a 1% sampling rate on domains
sourced from CT logs. Therefore, MAKO was only able to
analyze a small fraction of all possible sites during our data
collection period. Although we apply some filtering logic, as
described in Section III, the majority of our filtering steps were
applied after the conclusion of our data collection period. This
is mostly due to the time required to query for post-filtering
information, such as historical CT logs. Future uses of a
system such as MAKO should attempt to conduct most filtering
in real-time to increase the number of relevant domains in the
final data set. For instance, identifying newly-created domains
rather than certificate renewals of existing domains in real-
time would allow for greater worker capacity.

Additionally, our study focused entirely on server-side vul-
nerabilities present in sites at the time of certificate creation.
We made the choice to focus on these security posture weak-
nesses as opposed to factors primarily affecting end-users
because the sites listed on CT are new, and thus do not yet
have active users. We encourage future work to study the
changes in user-side security posture of sites over time after
TLS certificate creation. This can include factors such as TLS
and HTTP versions supported by the web server, as well as
the inclusion of security-related headers and web content such
as Content-Security-Policy and Subresource Integrity tags.

C. Ethical Considerations

During our study, we took care to ensure MAKO’s probes
were not harmful or disruptive to the sites we analyzed. Each

site visited by MAKO received a limited number of network
requests to publicly-accessible endpoints. At no point did
MAKO probe for vulnerabilities or use excessive web server
resources. Moreover, MAKO never transmitted a request to
update web server state, such as an HTTP POST or DELETE
request. We performed a limited scan on 20 ports, sending a
single TCP packet to each port. This is in line with prior work,
such as ZGrab, which scanned 16 ports on each host [29].

Although expanding MAKO’s interaction with each host past
the probes described in this paper could result in interesting se-
curity posture findings, we limit MAKO for ethical reasons. For
instance, by completing full SSH interactions with each host,
MAKO could discover the adoption of IDS systems (such as
fail2ban [53]), weak/default password use, and transition from
password-based to key-based authentication. Notably, although
we limited MAKO in this regard, attackers are not ethically
bound, and would likely identify additional vulnerabilities that
can be used to exploit hosts.

Finally, during our data collection period, we promptly
addressed all opt-out requests, propagating updated blocklists
to all MAKO instances. We also immediately responded to all
requests for collected data to the administrators of the scanned
sites and removed from our dataset all data pertaining to the
specified sites when requested to do so.

VIII. RELATED WORK

Certificate Transparency
Certificate Transparency has undoubtedly improved the secu-
rity of the modern web by increasing the trust the community
has of the certificates used by websites. However, its intro-
duction has also led to some unintended security and privacy
consequences that have been explored in prior work. A number
of studies have been conducted to understand the fundamental
nature of CT, including properties of the system itself as well
as actors involved in the ecosystem [54]–[58].

Prior work has also explored the privacy impacts of CT. A
major focus of this work has been the impact of the logging
of potentially-sensitive information regarding certificate regis-
trations [51], [52], [59]–[62]. This includes its use as a vector
for domain discovery [63]–[65]. Kondracki et al. explored
the ecosystem of bots utilizing CT for target acquisition by
creating a CT domain honeypot system, called CTPOT. The
system works by periodically creating certificates for pseudo-
random subdomains and measuring the resulting bot activity
directed towards those domains from a variety of network
vantage points. The authors found that bot activity towards
domains appearing on CT begins in as little as 12 seconds
after certificate creation, many of which produce malicious
payloads [6]. In this paper, we build upon these findings to
measure the security posture of hosts as they appear on CT. We
find that the bots utilizing CT to acquire scanning targets can
expect to find thousands of vulnerable hosts, many of which
will no longer be available to attackers in the hours after first
appearance on CT.

Web Host Security Scanning
Today, analysis on the security posture of web hosts is a mature
research field, spanning all levels of the network stack, and
targeting hosts from various sources. Security of web server
software has been examined from the perspective of the attack
surfaces in terms of open ports [66], [67], as well as the
configuration of vital mechanisms such as TLS and DNS [68]–
[70], and security measures within the content produced [7],
[8]. Some work has also taken a holistic approach to security
posture analysis, analyzing website security measures focused
in particular world regions [9], [10].

The standard in IPv4 web host scanning has come from the
work of Durumeric et al. with ZMap [71]. ZMap improved
upon prior Internet scanning tools by significantly decreasing
the time required to scan the entire IPv4 address space. This
led to follow-up work by Durumeric et al. in which the
Censys search engine was created, which allows researchers
and security professionals to query up-to-date information on
hosts across the Internet [29].

This paper takes inspiration from the work of Bock, who
demonstrated how attackers could utilize CT logs to hijack
the installation of popular web applications [48]. The author
scanned web pages from hosts found on CT logs and compared
the resulting web pages to known web application installers
to determine if they could be hijacked by a quick attacker.
Through this attack methodology, the author discovered over
four thousand sites running popular web applications such as
WordPress, Joomla, and Owncloud that were being installed
at the time of first visit. Our work builds upon that of Böck
by expanding this analysis to multiple layers of the network
stack, including scans of popular network ports, analysis of
vulnerable web server software, and web server access control
measures. Additionally, MAKO’s revisiting of sites in the days
following first appearance on CT allows us to quantify the
window of vulnerability created by administrators configuring
security measures after certificate creation.

In concurrent work, Pletinckx et al. study the implications
of CT logs on unwanted scanning traffic [72]. In addition to
measuring the volume of traffic directed at domains appearing
on CT logs, the authors also utilize CT logs to compare
the security posture of newly-created websites vs. established
websites with expired certificates. Unlike our work, the authors
study a limited set of sampled domains from a single day,
recrawling each site a handful of times during the following
week. Moreover, the authors measure the security posture of
a site utilizing only the HTTP headers and index HTML
code of each site, thereby significantly underestimating the
vulnerability of these CT-discovered sites.

In our paper, we quantify the dangers of premature CT
announcements, going far beyond all prior work both in terms
of scale as well as analysis. Our longitudinal, fixed-interval
scans in the hours to days after their certificate issuance
allowed us to track the hardening of sites in near realtime.
This is not the case for studies that utilize shorter scanning
durations, such as [72], leading to underestimating the number
of sites that become more secure post-certificate-creation.

Moreover, the scans conducted by MAKO allow us to ana-
lyze the security posture of online hosts at a greater depth than
prior work. We identify security vulnerabilities in sites appear-
ing on CT from multiple levels of the network stack, ranging
from misconfigured network firewalls, to incorrectly-public
web application installation forms. Our results demonstrate
that the web administration community is largely unaware
of the negative consequences of the CT ecosystem, leading
to these wide-ranging misconfigurations. We therefore hope
that this work will help educate website administrators of the
dangers of premature TLS certificate creation, and will lead to
the proliferation of better development workflows to safeguard
newly-created websites from attack.

IX. CONCLUSION

In this paper we presented MAKO, a web-infrastructure
security auditing system that ingests CT logs to discover
newly-created domains and quantify their security posture. In
total, we audited the security measures of 548,238 unique
web hosts that did not exist prior to our first discovery. By
visiting each host multiple times over the days following
its original certificate creation, we were able to measure the
delta in security posture of this period, ultimately discovering
200,421 (36.5%) sites that begin in a vulnerable state before
eventually resolving these vulnerabilities. These vulnerabilities
range from the network-level, with 124,307 domains closing
at least one sensitive network port in the hours after certificate
creation, to the content produced by web servers with 8,895
domains advertising the use of vulnerable web-server software,
before either hiding that information or updating the web
server to a non-vulnerable version.

Our results demonstrate the current lack of understanding
among administrators on the security implications of obtaining
TLS certificates. While, in the past, it could be assumed a new
endpoint was hidden until purposely advertised, the introduc-
tion of CT has moved that time to the instant a certificate
is created for an endpoint. We discovered that attackers that
abuse this temporal discrepancy can expect to find between 15-
25% more vulnerable hosts than by scanning only established
sites. Moreover, we find this window of vulnerability can be
open for multiple days after certificate creation, with thou-
sands of sites that can be exploited before vulnerabilities are
addressed. Overall, we hope our findings help to educate the
community on the implications of creating a TLS certificate,
and push future research for more secure web workflows, as
well as privacy-preserving certificate announcements.
Acknowledgments: We thank the anonymous reviewers and
shepherd for their help. This work was supported by the Office
of Naval Research (ONR) under grant N00014-24-1-2193, the
Army Research Office (ARO) under grant W911NF-24-1-0051
as well as by the National Science Foundation (NSF) under
grants CNS-2211575 and CNS-1941617.
Availability: To assist in furthering the understanding of the
kinds of vulnerabilities present on web hosts at the time
of certificate creation, we make anonymized portions of our
dataset available along with the source code of MAKO [73]

REFERENCES

[1] “Usage statistics of default protocol https for websites,” https://
w3techs.com/technologies/details/ce-httpsdefault.

[2] “Certbot,” https://certbot.eff.org, 2023.
[3] “Tls/ssl automation in digicert certcentral,” https://www.digicert.com/

solutions/security-solutions-for-automation, 2023.
[4] “Caddy server,” https://caddyserver.com, 2023.
[5] “Certificate transparency,” https://certificate.transparency.dev, 2023.
[6] B. Kondracki, J. So, and N. Nikiforakis, “Uninvited guests: Analyzing

the identity and behavior of certificate transparency bots,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 53–70.

[7] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex
security policy? a longitudinal analysis of deployed content security
policies,” in Proceedings of the 27th Network and Distributed System
Security Symposium (NDSS), 2020.

[8] Z. Kang, S. Li, and Y. Cao, “Probe the proto: Measuring client-side
prototype pollution vulnerabilities of one million real-world websites,”
in Network and Distributed System Security Symposium (NDSS), 2022.

[9] P. Chen, J. Visschers, C. Verstraete, L. Paoli, C. Huygens, L. Desmet, and
W. Joosen, “The relationship between the cost of cybercrime and web
security posture: a case study on belgian companies,” in Proceedings
of the 11th European Conference on Software Architecture: Companion
Proceedings, 2017, pp. 115–120.

[10] J. Mtsweni, “Analyzing the security posture of south african websites,”
in Information Security for South Africa (ISSA). IEEE, 2015, pp. 1–8.

[11] “Comodo incident,” https://www.comodo.com/Comodo-Fraud-Incident-
2011-03-23.html, 2023.

[12] “Turktrust incident,” https://blog.mozilla.org/security/2013/01/03/
revoking-trust-in-two-turktrust-certficates/, 2023.

[13] “Anssi incident,” https://www.mozilla.org/en-US/security/advisories/
mfsa2013-117/, 2023.

[14] “Diginotar hack,” https://slate.com/technology/2016/12/how-the-2011-
hack-of-diginotar-changed-the-internets-infrastructure.html, 2023.

[15] “Chrome certificate transparency policies,” https://
chromium.googlesource.com/chromium/src/+/refs/heads/main/net/docs/
certificate-transparency.md, 2023.

[16] “Apple’s certificate transparency policy,” https://support.apple.com/en-
gb/HT205280, 2023.

[17] “Opera browser - misissued certificates,” https://blogs.opera.com/
security/2015/10/misissued-certificates/, 2023.

[18] “Certificate transparency - acm queue,” https://queue.acm.org/
detail.cfm?id=2668154, 2023.

[19] “Facebook certificate transparency api,” https://
developers.facebook.com/docs/certificate-transparency-api/, 2023.

[20] “Google certificate transparency sdk,” https://github.com/google/
certificate-transparency, 2023.

[21] “Certstream,” https://certstream.calidog.io, 2023.
[22] “Https encryption on the web,” https://transparencyreport.google.com/

https/overview?hl=en, 2023.
[23] “Nmap,” https://nmap.org, 2023.
[24] “Zmap,” https://zmap.io, 2023.
[25] “Seleium,” https://www.selenium.dev, 2023.
[26] “nitko,” https://github.com/Tib3rius/nitko, 2023.
[27] “wpscan,” https://wpscan.com/wordpress-security-scanner, 2023.
[28] “w3af,” http://w3af.org, 2023.
[29] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,

“A search engine backed by internet-wide scanning,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 542–553.

[30] “Shodan,” https://www.shodan.io, 2023.
[31] “Metasploit,” https://www.metasploit.com, 2023.
[32] “Github api,” https://docs.github.com/en/rest, 2023.
[33] “How to prevent directory listing of your website with .htac-

cess,” https://www.thesitewizard.com/apache/prevent-directory-listing-
htaccess.shtml, 2023.

[34] “Report: State of the web,” https://httparchive.org/reports/state-of-the-
web#reqTotal, 2023.

[35] “crt.sh,” https://crt.sh, 2023.
[36] “Service subdomains explanation,” https://documentation.cpanel.net/

display/CKB/Service+Subdomains+Explanation? ga=
2.117030149.2095746051.1669735322-882536857.1669735322, 2023.

[37] “cpanel: Autoconfig and autodiscover,” https://docs.cpanel.net/
knowledge-base/email/autoconfig-and-autodiscover/, 2023.

[38] “Microsoft sql servers hacked in targetcompany ransomware at-
tacks,” https://www.bleepingcomputer.com/news/security/microsoft-sql-
servers-hacked-in-targetcompany-ransomware-attacks/, 2023.

[39] “22,900 mongodb databases affected in ransomware attack,”
https://www.darkreading.com/cloud/22-900-mongodb-databases-
affected-in-ransomware-attack, 2023.

[40] T. Mobily, Hardening Apache. Apress, 2004.
[41] M. D. Bauer, Linux server security. ” O’Reilly Media, Inc.”, 2005.
[42] “Tranco,” https://tranco-list.eu, 2023.
[43] “Apache http server project,” https://httpd.apache.org, 2023.
[44] “Wordpress,” https://wordpress.org, 2022.
[45] “Usage statistics and market share of wordpress,” https://w3techs.com/

technologies/details/cm-wordpress, 2022.
[46] “1.6 million wordpress sites hit with 13.7 million attacks in 36 hours

from 16,000 ips,” https://www.wordfence.com/blog/2021/12/massive-
wordpress-attack-campaign/, 2021.

[47] R. P. Kasturi, J. Fuller, Y. Sun, O. Chabklo, A. Rodriguez, J. Park, and
B. Saltaformaggio, “Mistrust plugins you must: A large-scale study of
malicious plugins in wordpress marketplaces,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 10–12.

[48] H. Böck, “Abusing certificate transparency or how to hack web appli-
cations before installation,” in DEFCON 25, 2017.

[49] “Openssh,” https://www.openssh.com, 2023.
[50] “Openssh users,” https://www.openssh.com/users.html, 2023.
[51] S. Eskandarian, E. Messeri, J. Bonneau, and D. Boneh, “Certificate

transparency with privacy,” arXiv preprint arXiv:1703.02209, 2017.
[52] H. Kwon, S. Lee, M. Kim, C. Hahn, and J. Hur, “Certificate transparency

with enhanced privacy,” IEEE Transactions on Dependable and Secure
Computing, 2022.

[53] “Fail2ban,” https://www.fail2ban.org/wiki/index.php/Main Page, 2023.
[54] J. Gustafsson, G. Overier, M. Arlitt, and N. Carlsson, “A first look at the

ct landscape: Certificate transparency logs in practice,” in International
Conference on Passive and Active Network Measurement. Springer,
2017, pp. 87–99.

[55] B. Li, J. Lin, F. Li, Q. Wang, Q. Li, J. Jing, and C. Wang, “Certifi-
cate transparency in the wild: Exploring the reliability of monitors,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2505–2520.

[56] C. Nykvist, L. Sjöström, J. Gustafsson, and N. Carlsson, “Server-side
adoption of certificate transparency,” in International Conference on
Passive and Active Network Measurement. Springer, 2018, pp. 186–
199.

[57] E. Stark, R. Sleevi, R. Muminovic, D. O’Brien, E. Messeri, A. P.
Felt, B. McMillion, and P. Tabriz, “Does certificate transparency break
the web? measuring adoption and error rate,” in IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 211–226.

[58] B. Dowling, F. Günther, U. Herath, and D. Stebila, “Secure logging
schemes and certificate transparency,” in European Symposium on Re-
search in Computer Security. Springer, 2016, pp. 140–158.

[59] D. Kales, O. Omolola, and S. Ramacher, “Revisiting user privacy for
certificate transparency,” in IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2019, pp. 432–447.

[60] R. Roberts and D. Levin, “When certificate transparency is too trans-
parent: Analyzing information leakage in https domain names,” in
Proceedings of the 18th ACM Workshop on Privacy in the Electronic
Society, 2019, pp. 87–92.

[61] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle, R. Holz,
T. C. Schmidt, and M. Wählisch, “The rise of certificate transparency
and its implications on the internet ecosystem,” in Proceedings of the
Internet Measurement Conference, 2018, pp. 343–349.

[62] T.-D. Nguyen, “Measuring the impact of certificate transparency on
scanning traffic,” 2022.

[63] B. Kondracki, B. A. Azad, O. Starov, and N. Nikiforakis, “Catching
transparent phish: Analyzing and detecting mitm phishing toolkits,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 36–50.

[64] A. Drichel, V. Drury, J. von Brandt, and U. Meyer, “Finding phish
in a haystack: A pipeline for phishing classification on certificate
transparency logs,” in The 16th International Conference on Availability,
Reliability and Security, 2021, pp. 1–12.

[65] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez,
N. Pitropakis, N. Nikiforakis, and M. Antonakakis, “Hiding in plain
sight: A longitudinal study of combosquatting abuse,” in Proceedings

https://w3techs.com/technologies/details/ce-httpsdefault
https://w3techs.com/technologies/details/ce-httpsdefault
https://certbot.eff.org
https://www.digicert.com/solutions/security-solutions-for-automation
https://www.digicert.com/solutions/security-solutions-for-automation
https://caddyserver.com
https://certificate.transparency.dev
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://www.mozilla.org/en-US/security/advisories/mfsa2013-117/
https://www.mozilla.org/en-US/security/advisories/mfsa2013-117/
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/docs/certificate-transparency.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/docs/certificate-transparency.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/docs/certificate-transparency.md
https://support.apple.com/en-gb/HT205280
https://support.apple.com/en-gb/HT205280
https://blogs.opera.com/security/2015/10/misissued-certificates/
https://blogs.opera.com/security/2015/10/misissued-certificates/
https://queue.acm.org/detail.cfm?id=2668154
https://queue.acm.org/detail.cfm?id=2668154
https://developers.facebook.com/docs/certificate-transparency-api/
https://developers.facebook.com/docs/certificate-transparency-api/
https://github.com/google/certificate-transparency
https://github.com/google/certificate-transparency
https://certstream.calidog.io
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://nmap.org
https://zmap.io
https://www.selenium.dev
https://github.com/Tib3rius/nitko
https://wpscan.com/wordpress-security-scanner
http://w3af.org
https://www.shodan.io
https://www.metasploit.com
https://docs.github.com/en/rest
https://www.thesitewizard.com/apache/prevent-directory-listing-htaccess.shtml
https://www.thesitewizard.com/apache/prevent-directory-listing-htaccess.shtml
https://httparchive.org/reports/state-of-the-web#reqTotal
https://httparchive.org/reports/state-of-the-web#reqTotal
https://crt.sh
https://documentation.cpanel.net/display/CKB/Service+Subdomains+Explanation?_ga=2.117030149.2095746051.1669735322-882536857.1669735322
https://documentation.cpanel.net/display/CKB/Service+Subdomains+Explanation?_ga=2.117030149.2095746051.1669735322-882536857.1669735322
https://documentation.cpanel.net/display/CKB/Service+Subdomains+Explanation?_ga=2.117030149.2095746051.1669735322-882536857.1669735322
https://docs.cpanel.net/knowledge-base/email/autoconfig-and-autodiscover/
https://docs.cpanel.net/knowledge-base/email/autoconfig-and-autodiscover/
https://www.bleepingcomputer.com/news/security/microsoft-sql-servers-hacked-in-targetcompany-ransomware-attacks/
https://www.bleepingcomputer.com/news/security/microsoft-sql-servers-hacked-in-targetcompany-ransomware-attacks/
https://www.darkreading.com/cloud/22-900-mongodb-databases-affected-in-ransomware-attack
https://www.darkreading.com/cloud/22-900-mongodb-databases-affected-in-ransomware-attack
https://tranco-list.eu
https://httpd.apache.org
https://wordpress.org
https://w3techs.com/technologies/details/cm-wordpress
https://w3techs.com/technologies/details/cm-wordpress
https://www.wordfence.com/blog/2021/12/massive-wordpress-attack-campaign/
https://www.wordfence.com/blog/2021/12/massive-wordpress-attack-campaign/
https://www.openssh.com
https://www.openssh.com/users.html
https://www.fail2ban.org/wiki/index.php/Main_Page

of the ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 569–586.

[66] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao, “Open doors
for bob and mallory: Open port usage in android apps and security
implications,” in IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2017, pp. 190–203.

[67] M. A. Sulaiman and S. Zhioua, “Attacking tor through unpopular
ports,” in IEEE 33rd International Conference on Distributed Computing
Systems Workshops. IEEE, 2013, pp. 33–38.

[68] C. Simoiu, W. Nguyen, and Z. Durumeric, “An empirical analysis of
https configuration security,” arXiv preprint arXiv:2111.00703, 2021.

[69] D. Springall, Z. Durumeric, and J. A. Halderman, “Measuring the
security harm of tls crypto shortcuts,” in Proceedings of the Internet
Measurement Conference, 2016, pp. 33–47.

[70] C. Wang, K. Shen, M. Guo, Y. Zhao, M. Zhang, J. Chen, B. Liu,
X. Zheng, H. Duan, Y. Lin et al., “A large-scale and longitudinal
measurement study of {DKIM} deployment,” in 31st USENIX Security
Symposium (USENIX Security), 2022, pp. 1185–1201.

[71] Z. Durumeric, E. Wustrow, and J. A. Halderman, “{ZMap}: Fast
internet-wide scanning and its security applications,” in 22nd USENIX
Security Symposium (USENIX Security), 2013, pp. 605–620.

[72] S. Pletinckx, T.-D. Nguyen, T. Fiebig, C. Kruegel, and G. Vigna,
“Certifiably vulnerable: Using certificate transparency logs for target
reconnaissance,” in 8th IEEE European Symposium on Security and
Privacy. IEEE, 2023.

[73] “Mako project website,” https://pragseclab.github.io/mako.

APPENDIX

We include the following tables as supplemental material to
the paper.

TABLE II: List of ports scanned by MAKO along with the most
common service that listens on each port.

Port Service

21 FTP
22 SSH
23 Telnet
25 SMTP
26 SMTP
53 DNS
80 HTTP
110 POP3
143 IMAP
194 IRC
443 HTTPS
993 IMAP-SSL
995 POP3-SSL
1433 MS SQL Server
3306 MySQL
5432 Postgresql
8080 HTTP
8443 HTTPS
8888 HTTP
27017 MongoDB

TABLE III: List of regular expressions used to identify directory
listing webpages.

Regex String

Index of /
Go up</span
Directory Listing For \[
To Parent Directory

TABLE IV: List of directories requested from each web host.

tmpl user icons
public cache blog
images database underscore
views plugins mssql
web config mysqli
test en-gb postgre
html categories oci8
css fields odbc
helpers fonts sqlite
app themes pdo
js dist cubrid
src application includes
models 1 akismet
examples tables languages
demo langs compat
img site site
templates mysql api
docs category php
static logs javascript
language errors lib
controllers client misc
libraries example documentation
drivers sql javascript
www wp-content session
assets network search
doc form sqlite3
tests description subdrivers
forms hooks samples
admin classes xml
system cli ibase
webapp third party about
core browser media
english sqlsrv wp-includes
default cache wp-content

backup

TABLE V: Top 10 most common HTTP Server header transitions.

First Header Modified Header %

N/A Cloudflare 19,333 (14.01%)
Apache N/A 18,283 (13.25%)
Cloudflare N/A 18,273 (13.24%)
Nginx N/A 15,592 (11.30%)
N/A Nginx 11,628 (8.43%)
N/A Apache 8,420 (6.10%)
Litespeed N/A 8,324 (6.03%)
Openresty N/A 6,557 (4.75%)
N/A Openresty 5,989 (4.34%)
N/A Litespeed 4,012 (2.91%)

https://pragseclab.github.io/mako

1 use Share\Models\Session;
2 use Illuminate\Http\Request;
3
4 class ShareAuthMiddleware
5 {
6 public function handle(Request $request, Closure $next)
7 {
8 if (! auth()->user()) {
9 $user_agent = $request->header(’User-Agent’);

10 $log = Session::where(’user_agent’, $user_agent)
->whereNotNull(’user_id’)->first();

11 if ($log && $log->user_id) {
12 $domain = (string) \Str::of(url()->previous()

)->after(’shop.’)->before(’.’);
13 if ($domain !== domain()) {
14 auth()->loginUsingId($log->user_id);
15 }
16 }
17 }
18 return $next($request);
19 }
20 }

Listing 1: Example of application logic error discovered by MAKO
through SQL error message.

TABLE VI: Full list of CVEs discovered from HTTP and OpenSSH
server version strings in our dataset.

Akka-http Werkzeug
CVE-2021-42697 CVE-2019-14806
AOLserver CVE-2020-28724
CVE-2009-4494 CVE-2022-29361
Apache GoAhead-Webs
CVE-2002-0392 CVE-2019-16645
CVE-2002-0661 gunicorn
CVE-2002-0843 CVE-2018-1000164
CVE-2004-0751 httpd
CVE-2005-2088 CVE-2002-1592
CVE-2006-3747 Microsoft-IIS
CVE-2011-3368 CVE-2005-2089
CVE-2013-6438 CVE-2008-0074
CVE-2015-3183 CVE-2010-1899
CVE-2016-0736 Kong
CVE-2017-3167 CVE-2021-27306
CVE-2017-3169 Lighttpd
CVE-2017-7679 CVE-2014-2323
CVE-2017-9789 CVE-2019-11072
CVE-2017-9798 LMS
CVE-2018-1303 CVE-2021-25200
CVE-2018-17189 LWS
CVE-2019-0196 CVE-2008-1042
CVE-2019-10081 mini httpd
CVE-2019-17567 CVE-2009-4490
CVE-2021-26690 MiniServ
CVE-2021-31618 CVE-2004-1468
CVE-2021-36160 CVE-2018-8712
CVE-2021-42013 NCSA
CVE-2022-22719 CVE-1999-0236
CVE-2022-28614 Nexus
CVE-2022-36760 CVE-2020-13933
APISIX OpenCMS
CVE-2022-29266 CVE-2019-11819
Apache Traffic Server CVE-2021-3312
CVE-2021-35474 Resin
Boa CVE-2008-2462
CVE-2017-9833 Squid
CVE-2018-21027 CVE-2016-10003
Nginx SRP
CVE-2013-4547 CVE-2014-3512
CVE-2016-0746 Sun-One
CVE-2017-20005 CVE-2004-0826
CVE-2018-16843 TwistedWeb
CVE-2018-16844 CVE-2020-10108
CVE-2019-20372 Uc-httpd
Jetty CVE-2018-10088
CVE-2018-12536 uhttpd
CVE-2018-12545 CVE-2019-19945
CVE-2021-28169 Virata-EmWeb
CVE-2021-34429 CVE-2006-0248
CVE-2022-2191 WildFly
Openresty CVE-2020-25689
CVE-2018-9230 Zope
CVE-2020-11724 CVE-2011-3587
Synapse OpenSSH
CVE-2022-31052 CVE-2006-5051
UPnP CVE-2015-5600
CVE-2019-16903 CVE-2016-6515

CVE-2021-41617

	Introduction
	Motivation & Background
	Mako: Web Host Security Auditing System
	Producer Nodes
	Worker Nodes
	Network Probes

	Deployment and Data Collection

	Experimental Results
	Web Host Security Posture Analysis
	DNS Records
	Port Scan
	Web Server Security
	Web Content

	Fine-grained Security Auditing
	Case Studies
	Public WordPress Installation Forms
	SQL Error Messages
	Vulnerable OpenSSH Servers

	Discussion
	Key Takeaways
	Limitations & Future Work
	Ethical Considerations

	Related Work
	Conclusion
	References
	Appendix

