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ABSTRACT
Themodernweb is a collectionof remote resources that are identified
by their locationandcomposedof interleavingnetworksof trust. Sup-
ply chain attacks compromise theusers of a target domain by leverag-
ing its often large set of trusted third parties who provide resources
such as JavaScript. The ubiquity of JavaScript, paired with its ability
to execute arbitrary code on client machines, makes this particular
webresourcean idealvector for supplychainattacks.Currently, there
exists no robustmethod for users browsing theweb to verify that the
script content they receive from a third party is the expected content.

In this paper, we present key insights to inform the design of
robust integrity mechanisms, derived from our large-scale analyses
of the 6M scripts we collected while crawling 44K domains every
day for 77 days. We find that scripts that frequently change should
be considered first-class citizens in the modern web ecosystem, and
that the ways in which scripts change remain constant over time.
Furthermore, we present analyses on the use of strict integrity ver-
ification (e.g., Subresource Integrity) at the granularity of the script
providers themselves, offering a more complete perspective and
demonstrating that the use of strict integrity alone cannot provide
satisfactory security guarantees. We conclude that it is infeasible for
a client to distinguish benign changes frommalicious ones without
additional, external knowledge, motivating the need for a new pro-
tocol to provide clients the necessary context to assess the potential
ramifications of script changes.
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1 INTRODUCTION
Themodernweb is a collectionof remote resources that are identified
by their location.UniformResource Locators (URLs) are the standard
resource identifiers, specifying the method by which they can be
retrieved (protocol), the authority that provides them (domain), and
their locationwithin the authority (file path). However, a URLmakes
no guarantees about the content of the resource at its address, and
this is particularly worrisome in the context of browsing the web.

JavaScript is a primary web resource that contains code to be
executed in a visitor’s browser. A typical web page may require tens
of scripts to function as intended, and they are often sourced from
remote third parties. Scripts typically provide core functionality (e.g.,
Ethers [18] to interact the Etherium blockchain) and user experience
enhancement (e.g., Bootstrap [4] for styling). Despite the many de-
fenses to prevent rogue script execution, they remain susceptible to
supply chain attacks, which inflict harm to an entity by exploiting
its trust in less-secure elements. Every additional remote origin that
provides JavaScript increases the size of awebsite’s supply chain and,
thus, attack surface; unfortunately, websites commonly trust many
third parties to provide resources, and these resources are identified
by their location with no guarantee of the expected content. Thus,
an adversary may be able to compromise the visitors to a domain by
compromising one of the domains that are trusted by it to provide
its scripts. We continue to witness instances of targeted attacks via
providers of third party scripts [25], and some reports measure that
half of all cyberattacks today target not only a victim’s network, but
also its supply chain [3].

No widely-deployed, robust integrity verification mechanism for
JavaScript exists on themodernweb. The closest such defense, Subre-
source Integrity (SRI) [30] has seen limited adoption, and the driving
force behind the growth it has experienced appears to be copy-paste
behavior [5]. The SRI proposal can be considered a strict integrity
scheme, because it checks for an exact content match by comparing
the hash of the content received against the hash of the expected
content. However, with the rapid evolution and growth of the web
and JavaScript ecosystem, we know that modern scripts frequently
change, for a number of reasons. These include: (1) frequent update
cycles on the scale of a few days [16], and (2) randomization of select
portions of the script content (e.g., comments and variables) [27]. As
such, relaxed integrity schemes seem better suited in this context.
Instead of comparing hashes of expected content, relaxed schemes
compare artifacts that describe characteristic attributes of the ex-
pected content to tolerate changes within defined bounds.

In this work, we conduct a comprehensive, large-scale study to
examine the feasibility of a robust JavaScript integrity defensemech-
anism and enumerate its requirements. We frame the key goals of
this work through the following research questions:
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• RQ0:What is thefractionofscripts thatchange?Wefind
that the distributions of scripts along two key dimensions —
by their frequencyof change in locationandchange in content
— are bimodal, indicating that most scripts change frequently,
or not at all. As such, integrity verification schemes must ac-
count for scripts that frequently change, in various dimensions,
as first-class citizens.

• RQ1: How do scripts change? We suggest defining script
integrity as the integrity of its dimensions, because scripts
can change in a number of dimensions beyond their content
(e.g., location and context). We empirically discover that the
ways in which individual scripts change remain constant.

• RQ2:Howapplicable is strict integrity verification?We
provide a comprehensive analysis on the infeasibility of strict
integrity at the granularity of the script providers themselves,
by leveraging SRI, the current state of the art, as a running
(counter)example. We conclude that strict integrity alone can-
not provide satisfactory integrity guarantees for the web.

• RQ3:Whatarepromisingdirectionsforfutureintegrity
verificationmechanisms?Althoughtherearemanydimen-
sions inwhich scripts can change, individual scripts appear to
consistently change in the samemanner over time.We recom-
mend adopting a self-expressive stance regarding web scripts
by asking developers to provide metadata of not only the scripts,
but also of theways inwhich they are expected to change so that
clients can leverage this external knowledge to gain the nec-
essary context to evaluate the ramifications of script changes.

2 BACKGROUND
Weassume that a user is able to establish a secure channelwith one of
the servers of awebsite and that JavaScript content provided fromthe
remote, third-party providers of this website is potentiallymalicious.
Thus, theuser requires some integrity verificationmechanism(s) that
can check whether the received content is expected, and these mech-
anisms should be able to tolerate changes to the content because
modern scripts frequently change, with updates on the scale of a few
days [16], and can vary based on uncontrollable parameters [27].

2.1 Integrity Verification
Traditional integrity verification mechanisms, such as the checksum,
weredeveloped tomaintain the integrityofdatabydetectinguninten-
tional transmission errors. Cryptographic hash functions are used to
provideguarantees in the context of an intentionallymalicious adver-
sary. The web standard Subresource Integrity (SRI) from theWorld
WideWeb Consortium (W3C) leverages cryptographic hash func-
tions by extending the specification for the HTML script tag with an
attribute that specifies the hash value(s) of expected script(s). Then,
the user agent (e.g., browser) can compute the hash value of the con-
tent that is received, compare it against the specified hash value(s),
and load the received script if and only if the hash values match
— such an integrity mechanism can be considered strict. A relaxed
mechanism similarly compares artifacts derived from the received
content with those derived from the expected content, but the arti-
facts donot describe the exact content; rather, they describe expected
characteristics to tolerate some well-defined level of change. In the
context of verifying the integrity of scripts, such artifacts are called

signaturesorfingerprints, andcanbederived fromamodel suchas an
Abstract Syntax Tree (AST) that describes the structure of a program.

2.2 The JavaScript Ecosystem
JavaScript comfortably sits as one of the most popular programming
languages over time inmany reports [11, 12, 29], but there are a num-
ber of complications in the JavaScript ecosystem. We summarize
them to be: (1) frequent update cycles, with the median lifespan of a
script in the order of a fewdays [16]; (2) script identification, as script
URLs can be dynamically generated; (3) dynamic code transforma-
tions; and (4) web dynamicity resulting from scripts and conditional
content. Script identification is a problem because it is impossible
to provide integrity guarantees for individual resources with unpre-
dictable, changing identifiers. Dynamic content modifications can
be unpredictable and have been found to apply to the syntax (e.g.,
variable names or amount of whitespace) and comments (e.g., times-
tamp) [27]; others might transform data literals of the script (e.g.,
Google TagManager [10]). Thus, clientsmay receive slightly-altered
forms of the same, basic functionality. In terms of web dynamicity,
we are mainly concerned with: (1) the user agent (i.e., browser or a
programmatic request library), because they support different sets of
capabilities (e.g., JavaScript), and (2) bot detection, because servers
may present different content if they question the authenticity of the
visitor. We address this concern by leveraging “headless” browsers:
versions that do not have a graphical display and can be automated.

3 DESIGN&METHODOLOGY
In this section, we present the key methodology behind our script
collection and subsequent integrity analyses. We release our code
artifacts to the public to encourage future work in this direction 1.

3.1 Script Integrity
As previously mentioned in Section 2, the full script URL may be
an unreliable identifier because of dynamic generation. To partially
account for this, we use the URL without the query component, and
add the requesting domain (i.e., Referer of the request) to the script
identifier to account for script providers varying their responses
by this variable, because renaming and relocating of scripts is a
common occurrence, in addition to using variable query strings [6].
In retrospect, this definition still gives rise to an explosion in the
number of scripts because of dynamic URLs, as seen in Section 4.

We present an overview of representative JavaScript integrity
verification schemes in Figure 1, illustrating SRI, structural signa-
tures proposed by Soni et al. [24], and contextual script fingerprints
by Mitropoulos et al. [17]. On one hand, a structural signature is
a hash computed over a special type of AST that is designed to
permit several isomorphisms — variable renaming, object property
permutations, and function (variable) renaming — that represent
common, non-structural changes in content. If a structural signa-
ture hash changes, that indicates that the functionality of the script
has changed through the introduction, removal, or modification of
code [24]. However, we note that this includes changes to data literals
in the code, which may seem trivial, but can yield drastic differences
in script behavior.On the other hand, contextual script fingerprints
are combinations of various attributes that are extracted from the
1https://doi.org/10.5281/zenodo.7192279

https://doi.org/10.5281/zenodo.7192279
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variable renaming object property permutation

function (var) renaming

Structural Signatures
Contextual Script Fingerprints

// found on foobar.com/welcome
// src: bar.com/script4.js
function bar(a) {
     console.log(`bar: ${a}`);
     function innerfoo(b) {
         console.log(`innerfoo: ${b}`);
     }
     innerfoo(a);
}
function foo(x,y,z) {
     var a = "https://foobar.com";
     a = "https://example.com";
     var data = {};
     sendRequest(a, data); 
} 

domain 
page URL*

remote IP* remote 
IP ASN*

script URL

block 
structure

JavaScript
keywords

initiator 
URL(s)

domain 
substrings

remote 
origins

initiator 
type

1.2.3.4 123

bar.com/
script4.js

// script2A 
var x = {
     a: 'hi',
     b: 'bye' 
}; 

22e8...1b04

foobar.com/
welcome

{{}}{}

// script1B
var a = 10, b, c;
b = a + 1;
c = b + 1;
a = a + b + c; 

84db...328e function: 3
var: 2

foobar.com/
welcome

// script1A
var x = 10, y, z;
y = x + 1;
z = y + 1;
x = x + y + z; 

84db...328e

(HTML) 
parser

e72b...4010

// script3B
function def(x,y,z) {
     console.log(y+z);
     console.log(x); 
} 

e72b...4010

// script3A
function abc(a,b,c) {
     console.log(a);
     console.log(b+c); 
} foobar.com

example.com
example.com

Strict Integrity (SRI)
hash(script.js content)

script.js

AST-derived signatures that allow 
structural isomorphisms content and request/execution context attributes

Integrity Verification Schemes
flexibility

no literal values*

d84d...6541

// script4A
var x = "foo";

// script2B 
var x = {
     b: 'bye',
     a: 'hi'
}; 

22e8...1b04

d84d...6541

// script4B
var x = "bar";

Figure 1: Showcasing JavaScript integrity verification schemes. Structural signatures were proposed by Soni et al. [24], and contextual script fingerprints by
Mitropoulos et al. [17]. Extra characteristics that we introduce for analysis of script changes are distinguished by a trailing asterisk.

script content or execution context, and were originally designed
to prevent cross-site scripting attacks [16].

Taking a step back, we argue that scripts are resources that not
only have highly dynamic execution behavior, but also highly dy-
namic content that changes. Thus, properly identifying how scripts
change must account for how scripts change in a number of dimen-
sions. These include contextual characteristics of the script request
(e.g., the request initiator and the Referer header), static character-
istics of the script content (e.g., raw block structure or information
extracted from the AST of a script), dynamic attributes of the script
execution (e.g., remote origins contacted for fourth-party scripts),
and other miscellaneous characteristics that might be uncontrol-
lable or randomized from the perspective of a client-side integrity
verification mechanism. In short, the integrity of a script can be de-
fined as the integrity of its dimensions. We break down the integrity
verification proposals into key dimensions and present a taxonomy
in Table 1. These integrity dimensions fuel our later analyses in
Section 4 to provide insights into howmodern scripts change.

3.2 Data Sample
We pick a sample of the top 1million domains on the Tranco list [14]
generated onNovember 22, 2021 2 as the set of domains to be crawled
daily. To avoid a potential bias in our sample, we accordingly divide

2Available at http://tranco-list.eu/list/9892

Table 1:A taxonomy of script integrity dimensions, and how scripts change.
Dimension Description

Co
nt
ex
t

In
iti
at
or

Initiator URL URL of resource that triggered request [17]

Initiator Type HTML parser or script [17]

User Agent Client type (e.g., browser or request library)

Lo
ca
tio

n Script URL (Origin) Full URL (origin) of the script

Domain/Page Domain/URL of the first-party webpage

IP Address/ASN Location of the remote provider server

Co
nt
en
t Ra
w

JS Keywords # of times JavaScript keywords used [17]

Block Structure Braces and parentheses substring [17]

A
ST

Domain Substrings Domain regex matches [17]

Structural Signature Hash of special type of AST [24]

D
yn

am
ic

In
cl
us
io
ns

Remote Origins Remote, fourth-party script inclusions [17]

M
is
c

-
Random Identifiers Randomized variable names [27]

Time-varying Content varies by request time [27]

the domains into three unevenly-sized buckets to account for the un-
derlying popularity distribution, andwe include a random sample of
20,000 domains from each bucket. In particular, the bounds for each
rank bucket in interval notation are [1,20K], (20K,500K], (500K,1M].
For each sampled domain, we constrain the set of pages that are
crawled every day to ensure that we do not observe false changes in
scripts that arise from crawling different parts of a site. To bootstrap
the set of pages, our crawlers first send a basic GET request to all
domains. If they receive a response within 10 seconds, they will visit
the landing page of the domain with a headless browser, attempt to
discover up to 10 public pages that are linked from the landing page,
and save this set of pages to be crawled every day. The crawlers visit
multiple pages of each sampled domain, because a user browsing
the web often visits more than just the landing page of a website and
other pages of the same site can be drastically different [8, 28]. In
retrospect, we found that this choice made it possible for us to find
misconfigurations in the already-small set of requests that use SRI,
which we describe in Section 5. Domains that failed to reply were
retried once every hour for 24 hours; those that failed to respond in
this bootstrapping period are permanently excluded.

3.3 Infrastructure
The supporting infrastructure comprises a data collection cluster,
distributed database, and analysis pipeline. The data collection clus-
ter consists of three types of workers — the manager node, crawler
nodes, and serializer nodes. The manager node determines which
sites have yet to be crawled and schedules these, and any necessary
retries. After receiving a task, the crawler nodes launch a bare, head-
less Chromium instance for each domain, and concurrently visit the
same set of pages that were initially discovered. After waiting until
there are no longer any in-flight network requests, or up to 30 sec-
onds, they discard network request and response chains that did not
result in JavaScript, and keepmost of themetadata for the remaining
network traffic that are made available by the ChromeDevTools Pro-
tocol [9]. In order tomaximize their efficiency, they send their results
to a queue for the serializer nodes to write to the database. The data-
base is distributed across tens of nodes that host Elasticsearch [21]. It
is traditionally considered a search engine, but we found that its op-
timizations for indexing and searching were invaluable to crawling
JavaScript at a large scale. The final analysis pipeline consists of a set
of notebooks used to generate the presented figures and numbers.
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Figure 2: Bimodal distribution of the URL lifespans of all observed scripts. The
left y-axis scale is for the PDF; the right for the CDF.

CrawlingEthically.Thecrawlersuseautomated,headlessbrowsers
to visit the same (at most) 10 unique public pages on any given do-
main per day. These pages were found by traversing links from the
landing page of the domain, and the crawlers neither attempt to visit
random URLs nor send malformed input of any kind. The requests
they send are the same as those sent by a normal user browsing a
website. The workers keep a page open for at most 60 seconds, min-
imizing the number of periodic heartbeat requests. If a page times
out, the worker will retry that page once; if the page fails again, the
job will be re-enqueued after one hour. Considering the crawl queue
size and job completion rate, a completely-unresponsive page will
be requested fewer than ten times per day.

When analyzing anomalous data in our initial crawls, we found
that some websites detected that the requests were coming from
headless browsers. Thus, we attempted to mimic an actual brows-
ing session by instrumenting the headless browsers to appear more
similar to the headful version (e.g., mock certain APIs that are not
available inheadlessmode anduse aUser-Agent value fromaversion
of headful Chrome) [2]. However, we also prioritized transparency
with respect to domain administrators. We embed a customHTTP
header (X-Info) in all requests, whose value is a URL pointing to a
web page that describes the crawling parameters of our experiment,
including instructions on how to request exclusion from our daily
crawls (we received no such requests during our experiment).

4 MODERN SCRIPT CHANGES
In this section, we begin by describing the collected dataset and then
detail the analyses to answer the initial research questions.

4.1 Dataset
Our bootstrapping period started on November 24, 2021 and we
present an analysis on the data collected betweenDecember 10, 2021
and February 26, 2022 for a duration of 77 days. We choose not to
include the first 18 days becausewewere still refining our data collec-
tion infrastructure, but we verified that the exact time window does
not affect our results by generating and comparing our results with
two disjoint, non-overlapping timewindows of twomonths each. Of
the initial 60,000 domains in our sample, we find that: (1) we failed to
discover pages for 9,220 domains in our bootstrapping period; (2) we
were completely blocked by 321 domains (requests fromworker IP
addresseswouldalways timeout); (3) 2,038domainsdidnotmakeany
separate script requests (i.e., completely static websites or all scripts
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Figure 3: Bimodal distribution of the number of changes in daily-observed
scripts. The left y-axis scale is for the PDF; the right for the CDF.
are inline); (4) 3,918 domains used entirely first-party scripts; and
(5) there remain 44,503 domains whose script requests we analyze.

Using the script definition from Section 2, and excluding first-
party script requests and those that were initiated because of an
iframe (e.g., an embedded Google Maps iframe), we observe a total
of 5,930,962 scripts (with 2,747,077 unique script URLs) from 52,169
unique provider origins, for an average of 133 scripts per domain,
or 114 remote script provider origins per domain. On average, our
infrastructure ingested 90 GB of data every day (with one replica).

4.2 (RQ0) First-Class Citizens
Prior works reported that frequently-changing scripts comprised
a negligible fraction of all scripts and were not used by many do-
mains [24]. This is no longer the case: scripts that frequently change
areno longer the exception, but thenorm.Thedistributions of scripts
are bimodal along two orthogonal dimensions: (1) by the URL lifes-
pan of a script in Figure 2, and (2) by the number of content changes
of a script in Figure 3. In both perspectives, themodes are at opposite
extremes, with few scripts that fall in between the twomodes, easily
lending this behavior to a simple taxonomy based on the dynamicity
of its location and of its content. Refer to Table 2 for high level statis-
tics regarding the bimodal distributionof scripts; note that the “Total”
buckets account for the scripts that fall in between the two modes.
Distribution of Script URL Lifespans. In Figure 2, the URL lifes-
pan of a script is calculated by taking the difference in days between
the last and first dates we observe a script while crawling a domain.
We conservatively consider script URLs to be static or dynamic ac-
cording to the two modes of the distribution: static if they never
changed, and dynamic if they changed every day. Scripts with dy-
namic URLs account for more than half (51%) of the entire set of
external scripts in our dataset.We note that this phenomenon occurs
even with our script definition that disregards URL query parame-
ters as mentioned in Section 2. Such dynamic-URL scripts typically
include an unpredictable identifier in the URL, and a small fraction
of domains that contribute an abnormally large amount of such
scripts caused an inflation in this particular class of scripts. This is

Table 2:High-level statistics of Static andDynamic scripts.

URL Content # Scripts # Domains # Origins

D - 3,027,359 (51%) 27,701 (62%) 21,963 (42%)
S - 622,620 (11%) 40,281 (91%) 27,680 (53%)

S S 178,316 (3.0%) 30,279 (68%) 15,341 (29%)
S D 37,010 (0.6%) 13,870 (31%) 2,088 (4.0%)

Total 5,930,962 (100%) 44,503 (100%) 52,169 (100%)
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Table 3: Variability of daily-changing scripts (𝑁 =38,030).

Same UA Time Indet.

Same 18% 22% 21% 24%
UA 22% 5% 30% 30%

Time 21% 30% 29% 32%
Indet. 24% 30% 32% 1.8%
Totals 47% 41% 68% 39%

in stark contrast to scripts that used the same URL throughout the
time window, of which there are 10.5%.

Takeaways: Dynamic-URL scripts are very common in the mod-
ern script ecosystem, which makes the task of reliably identifying
remote scripts to bemuchmore difficult fromanexternal perspective.
Incorporating (some part of) the URL of the script will inevitably
cause an explosion in the number of scripts.
Distribution of ScriptContentChanges. Similarly, from the per-
spective of the number of content changes as shown in Figure 3,
we conservatively categorize scripts as follows: static if they never
changed in content, or dynamic if they changed in content every
day. Figure 3 considers only the set of scripts that were observed
daily (not the set of scripts that were labeled as having static URLs
in Figure 2, because those scripts could have disappeared and then
reappeared). We encountered 223,515 scripts daily, which is 36% of
scripts that were marked as having static URLs. Of these scripts that
were observed daily, 27% of them never changed in content, and 16%
of them changed in content every day; furthermore, the scripts that
changed in content every day were found in 31% of all domains.

Takeaways: A significant portion of scripts that are observed daily
also change in content. If an integrity verification mechanism can-
not tolerate scripts that change content at least once within two,
four, or eight days, it would be inapplicable to 21%, 40%, or 62% of
daily-observed scripts, respectively.

4.3 (RQ1) Consistent Patterns of Change
In this subsection, we detail the consistent patterns of change in
scripts, and we include complementary analyses in Appendix A.
Dynamic Generation. Table 3 presents a quantified breakdown
of how daily-changing scripts vary in content based on the user
agent that makes the request and the time of the request, from one
day of data. After crawling a page, every script request made by the
browser was replayed twice —with the original headers — using a
programmatic request library, and then categorized as follows:

(1) Same (47%): all three responses are the same.
(2) UA (User Agent, 41%): both of the responses to the replayed

requests are the same, but different from the original response.
These URLs were not one-time URLs, and we theorize this
behavior is caused by user agent fingerprinting [1].

(3) Time (68%): all three responses are different [27].
(4) Indet. (Indeterminate, 39%): theoriginal response is the same

as only one of the two responses to the replayed request.
A single script can belong to more than one category, which can

occur if it is requested multiple times during one crawl of a domain
(e.g., multiple times on the same page or across multiple pages).
These statistics suggest that even if daily-changing scripts do not
actually receive codeupdates fromtheir developers, the current strict
integrity mechanisms, which only take into account the content of
the script, can only be straightforwardly applied to the 18% of them
that do not dynamically vary by other parameters. In other words, a

2022-01-16 2022-01-23 2022-01-30 2022-02-06 2022-02-13
Date
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Number of Scripts with Different Characteristics (N=2211)

(91%) Structural Signature
(56%) Remote IP
(49%) Remote IP ASN
(32%) NL Structural Signature
(31%) Script URL
(12%) Block Structure
(11%) JS Keywords
(10%) Initiator URLs
(6.6%) Domain Substrings
(5.2%) Domain Page URL
(2.4%) Remote Origins
(0.8%) Initiator Type

Figure 4:The number of scripts that have a different characteristic as compared
to thepreviousday; thepercentage indicates themeanpercentageof changedaily.

significant fraction (82%) of these scripts change because of a number
of parameters (including the user agent and time of request) thatmay
not be easily adapted into a strict integrity mechanism such as SRI.

Takeaways: A robust mechanism should account for scripts that
vary based on uncontrollable parameters because they comprise a
large portion of daily-changing scripts. Only 18% of such scripts do
not dynamically vary, whereas 41% vary by user agent, 68% by time,
and 39% by indeterminate parameter(s).
Consistent Types of Change in Scripts. In Figure 4, we present
a time-series plot that depicts the number of scripts that experience
changes along different dimensions in a 32-day windowwithin our
original 77-day analysis window. The plotted sample consists of the
first scriptswith a new script URL in sorted order, out of the ones that
are both frequently-changing and categorized as Same, to ensure a
reasonable runtime, and to ensure that we compare the same scripts.

We extract Table 1 characteristics from the sample on each day,
and check if the values are the same as those from the prior day. A
greater number for a particular characteristic implies that a greater
number of scripts experience change in that dimension. We high-
light two key observations: (1) the number of changes are generally
constant; i.e., time does not affect the manner in which these scripts
change, and (2) there is a general ranking of attributes that change
the most in scripts, with most of the scripts experiencing changes
in their structural signature every day. If the structural signature
of a script changes, that means it experiences changes that affect
script execution or significat changes to code [24]. If we consider an
augmented, “no-literal” (NL) version of structural signatures that ex-
cludes data literals, the daily mean percentage of changes decreases
significantly from 91% to 32%. In other words, an average of 59%
scripts experience changes to only data literals, as compared to the
32% that receive changes to code, on a daily basis. Furthermore, we
confirmed that these trends persist, even if the sample in Figure 4
had comprised only advertisement and tracking-related scripts as
classified by EasyList and EasyPrivacy.

Takeaways: Frequently-changing scripts appear to consistently
change in the same dimensions, holding true even for complex,
ad-related scripts that appear on filter lists such as EasyList and
EasyPrivacy. On average, 59% of such scripts experience changes
to only data literals, as compared to the 32% that receive changes to
code, on a daily basis. There is generally a well-ordered ranking of
the stability of the different script integrity dimensions.

4.4 Case Studies
In this section, we provide examples of the types of changes in
frequently-changing scripts that do not vary by user agent or time.
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Data Changes. In the structural signature scheme, data changes
cause signatures to change because the identity of an identifier in-
cludes its initialization value. This is because data changes can affect
the execution and behavior of scripts, even if functions remain un-
changed. Furthermore, they can bemore complex than simple string
changes; for example, variables can contain functions that will be
dynamically loaded. A popular analytics script, Google Tag Man-
ager (GTM), is one that often experiences changes in data values.
It acts as a “loader” script that pulls in other scripts and provides
data to them. We observe that 7-eleven.com.mx uses GTM, and
we witness changes every day in data variables that presumably
live in the data layer (e.g., the variable N.oh). Others may act as
configuration files; we find that cnet.com sources a script from
the effective top-level domain (eTLD) fastly.net at a file path that
ends in /gpt_and_prebid/config.js, and it primarily experiences
changes in the property settings[‘rules’], which appears to de-
fine rules for ad prebidding.

Takeaways: The impact of data changes on the execution of a
script varies, and there is no one-size-fits-all solution to handling
data changes from the perspective of a client, without knowing the
potential ramifications of the data change.
Code Transformations.Other scripts experience direct modifica-
tions to the code itself, instead of to only data literals. For example,
such scripts might alternate the positions of function declarations
or modify function calls. We observe an instance of the former on
the domain hiragana.jp, which fetches a script from the origin
js.hs-scripts.com at the path /8947762.js. From a comment
that appears in some versions of the script, it self-identifies as a
“HubSpot Script Loader.” In addition to a changing data variable,
which holds the URL for a script to be dynamically loaded, the
position of the top-level function that contains the variable also
changes, with no apparent pattern. This script was served from a
content delivery network (CDN), but we did not observe a corre-
lation between this characteristic and the transformations. Simi-
larly, other scripts might regularly experience changes to the names
of its functions. Such scripts include those found on the domains
timescolonist.com (sourced from eTLD facebook.com), jd.hk
(from jd.com) and silive.com (from blueconic.net). All three of
these scripts are comprised of a single, global function call that is
defined externally (by another script) — the function name varies,
but the arguments remain the same.

Takeaways: Direct modifications to code present a different chal-
lenge than modifications to data values. A naïve solution to handle
changes to data values can be to entirely exclude them from the in-
tegrity verification process, and script authors can attempt to verify
data literal valuesusedby their codewithusing their ownknowledge.
However, there is no straightforward, analogous naïve safeguard if
the names of function calls are also excluded, particularly if there
are scripts that access global objects exposed by other scripts.

5 (RQ2) PITFALLS OF STRICT INTEGRITY
In this section, we discuss crucial pitfalls in the usability of strict
integrity mechanisms such as SRI and also include complementary
analyses in Appendix B.
Correctness.We observe that 79% of all scripts never changed con-
tent. These scripts were provided by 76% of all script providers, and

Figure 5: Remote origins, by the static and non-static scripts they provide.

were found on 90% of the domains we were crawling. We empha-
size that a visitor is protected from a third-party compromise if and
only if every script requested from that particular third party uses
SRI. Verifying the integrity of a subset of scripts from a third party
offers partial protection at best, and is less secure than verifying the
integrity of all scripts from that third party.

In Figure 5, we visualize the ability to “apply SRI” to all 52,169
origins, by comparing the number of non-static-content scripts (𝑥)
with the number of static-content scripts (𝑦). We note that there are
primarily three classes of interest: (1) 44% of third parties serve only
static scripts (pointswith𝑥 =0), towhich SRI is straightforwardly ap-
plicable; (2) 24% of third parties serve only changing scripts (points
with 𝑦 = 0), to which the usability of SRI ranges from somewhat
usable to impractical depending on the variability of the scripts; and
(3) 32% of third parties serve a mix of both, to which it is difficult to
completely apply SRI. Using SRI for such third parties offers partial
protection at best and no protection at worst. However, it may not
be possible to apply SRI to all origins that provide only static scripts.
If we revisit the 79% of all scripts that never changed content, we
find that only 6.5% of them are delivered by providers that only serve
static scripts, whereas 94% of them are delivered by providers that
serve both static and dynamic scripts. On a randomly selected day in
our time window in which 8,911 domains used SRI, we find that, for
each of these domains, there were on average 0.98 third parties that
provided scripts for which SRI was always used, 0.32 third parties
that provided scripts for which SRI was used for only some scripts,
and 15 third parties that provided scripts for which SRI was not used
at all. In fact, 21% of these domains did not completely apply SRI to
all the scripts from any one particular third-party provider.

On one hand, from the bimodal distribution of script content
changes in Section 4.2, the 31% of all domains which requested for
at least one script that changed every day cannot completely protect
themselves against these providers. On the other hand, the 98% of
all domains which requested at least one script that changed in con-
tent may find it difficult to apply SRI. We thus establish a range of
the difficulty of applying SRI: at least 31%, and at most 98%, of the
domains in our sample would find it difficult to protect themselves
against third parties using strict integrity alone.

Takeaways: To correctly secure oneself against a remote third
party requires verifying the integrity of all scripts received from
them. A significant fraction (21%) of the already-small percentage
of first parties that adopted SRI do not use it appropriately, and for
every first party domain that used SRI, the number of third parties
with no SRI protection is more than one order of magnitude larger
than the number of third parties with partial or complete SRI protec-
tion. Furthermore, 24% of third party origins provide only non-static
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Table 4: SRI misconfigurations.

Rank Domain Remote Script URL Duration Observed Description

1,136 cuny.edu browsealoud.com/plus/scripts/ba.js [2021-12-10, 2022-02-26] Asks remote party for SRI digest
9,510 universalorlando.com cdn.cookielaw.org/scripttemplates/otSDKStub.js [2022-01-29, 2022-02-22] Different digests for the same script
15,168 donorschoose.org ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js [2021-12-11, 2022-02-26] Different digests for the same script
680,867 mcbw.de mcbw.de/.../first-party-scripts.js [2021-12-10, 2022-02-26] Different digests for 14 first-party scripts
680,324 borlange.se browsealoud.com/plus/scripts/ba.js [2021-12-10, 2022-02-26] Asks remote party for SRI digest
682,215 frisianflag.com code.jquery.com/jquery-3.6.0.min.js [2021-12-10, 2022-02-26] Different digests for the same script

scripts, and 32%provide amix of static andnon-static scripts,making
it even more difficult for a first party to secure itself against third
party providers. Finally, at least 31%, and atmost 98%, of the domains
in our sample would find it difficult to straightforwardly protect
themselves against third parties using strict integrity alone.
Misconfigurations. Due to the scale of our experiment, we were
able to witness previously undocumented SRI misconfigurations
on six domains. We found two major types: (1) obtaining the SRI
digest of a remote script from its provider, and (2) using incorrect
SRI digests for a script on some pages and correct digests on other
pages — even for first-party scripts.

The first misconfiguration was found on a third-party script used
by the domains cuny.edu (ranked 1,136) and borlange.se (ranked
680,324) while investigating how the digest for a script changed in
the process of crawling both domains on 2022/02/10. We found that
both domains include a ba.js script in theHTMLof some pages that
(1) first asks the URL browsealoud.com/.../sri.json for the SRI
digest of a particular version of the browsealoud.js script, before
(2) programmatically injecting the<script> elementwith thedigest.
This is an incorrect usage of SRI that does not provide any security
guarantee, even if the initial ba.js script were to be requested using
SRI (it did not use SRI), because a compromised provider would be
able to change the script content and the digest accordingly.

The second misconfiguration is related to a shortcoming of the
infrastructure used by domains to manage their dependencies. We
observe that multiple pages of the same website would request the
same script, but with different SRI digests. Fortunately, in the mis-
configurations that we found, at least one of the digests was correct,
but the other digests were either blank (i.e., the browser will not at-
tempt to verify integrity) or wrong (i.e., the browser will not execute
the script and report a failure in the developer console). These mis-
configurations could continue for long periods of time; we witness
short-lived cases that suddenly started and stopped after a few days,
suggesting manual misconfiguration, but also cases that continued
for months, suggesting the developers were not aware of the prob-
lem. Interestingly, we found 14 instances of thismisconfiguration for
first-party scripts on one domain, indicating that misconfigurations
are possible, even with full control over the domain. Refer to Table 4
for more detail about these misconfiguration instances.

Takeaways: It is imperative for new standards, particular security
standards, to possess built-in reporting mechanisms. Surprisingly,
it was possible for SRI misconfigurations of first-party scripts to
remain unnoticed for multiple months.

6 RELATEDWORK
To our knowledge, there exists no other study that presents as com-
prehensive a report of script changes in themodernweb through the
lensof integrity.Ourwork focusesonenumerating the severityof the
integrityproblem,ascompared topriorworks thatproposeddefenses

to address it. In this section, we review such integrity mechanism
proposals, as well as existing measurement studies that contribute
crucial findings in this space.

Our work primarily relates to studies of SRI usage. Kumar et
al. [13] found that less than 1% of sites use SRI in their enumeration
of security challenges in a growing web, and Shah and Patil [22]
found that less than 1% of sites enforce SRI on all subresources in
their measurement of its adoption in 2018, two years after its release.
Chapuis et al. followed in this line of work with a thoroughmeasure-
ment of the adoption of SRI using a much larger set of web pages,
over the span of multiple years, and also surveyed developers to
understand how SRI is perceived and used, finding that the driving
factor behind its growth seems to be copy-paste behavior from devel-
opers [5]. Similarly, Steffens et al. conducted a targeted study [27] to
understand how third-party script inclusions are impairing the use
of Content Security Policies (CSP) [26] and SRI. In particular, they
find that high-profile parties often randomize parts of their scripts,
hindering the ability to use SRI.We argue that these studies measure
the adoption and usage of an implementation of an integrity mech-
anism, instead of the usability of integrity verification. In contrast to
the statistics reported by Soni et al. that frequently-changing scripts
only accounted for 0.62% of all scripts found on 69 domains [24], we
find that frequently-changing scripts are no longer a rare exception:
16% of scripts, located on 31% of all domains, change content every
day, and that SRI would not provide satisfactory security guarantees
even if every static script were protectedwith SRI, because providers
serve a mix of static and non-static scripts.

There also exists a line of work that studies dependencies on
the Internet. Dell’Amico et al. [7] performed a large-scale study of
both active and passive DNS data to discover the dependency rela-
tionships between websites and Internet services, finding that the
service ecosystem is dominated by a handful of popular providers.
Similarly, Simeonovski et al. [23] evaluated the impact of multiple
attacks, including the distribution of malicious JavaScript content,
using their technique tomodel services, providers, and dependencies
as a property graph. Nikiforakis et al. [20] performed one of the first
large-scale studies of JavaScript in particular, and a recent study from
Mitropoulos et al. analyzed the evolution of JavaScript code in the
wild [16].Overall, these studies seek to characterize the relationships
betweenwebsites and their dependencies, whereas ourwork focuses
on breaking down how a particular type of dependency changes.
With respect to the finding that scripts have frequent update cycles
reported by Mitropoulos et al., it corroborates our own, but this
finding is in the context of their study of the evolution of software
quality issues, as opposed to how such frequently-changing scripts
change and present a challenge to integrity verification.

In addition, studies regarding JavaScript integrity verification are
also closely related. We broadly group integrity verification mech-
anisms as strict or relaxed, depending on the rigidity of their content
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matching. Strict integrity verification mechanisms include the SRI
standard and more recent proposals from Nakhaei et al. [19] and
Mignerey et al. [15]. Nakhaei et al. proposed a protocol that would
require clients to treat received script content as raw text, extract
the first line containing a hash of the rest of the text (i.e., the actual
script content), andverify thehashbefore executing the script,which
does not address our threat model. Mignerey et al. proposed a new
web ecosystem component with trusted third parties to produce
and store files that contain the hashes of scripts that are allowed
to run on a page. Relaxed integrity mechanisms include structural
signatures from Soni et al. [24] and contextual script fingerprints
fromMitropoulos et al [17] as previouslymentioned.We distinguish
this work as follows: (1) we focus on enumerating the severity of the
problem they intend to address, and (2) we shed light on potential
reasons as to why such defense mechanisms are not applicable in
the modern web. We demonstrated the importance of accounting
for frequently-changing scripts because of their wide use and pre-
sented results on the (in)stability of various script characteristics,
including contextual attributes and structural signatures, that would
contribute to the overall instability of their proposals.

7 (RQ3) DISCUSSION
Strict integrity alone, such as SRI, cannot account for frequently-
changing scripts (including those that are dynamically generated)
and scripts with dynamic URLs. We re-emphasize that frequently-
changing scripts appear to change in consistent manners, holding true
even for complex, ad-related scripts that appear on filter lists such as
EasyList and EasyPrivacy, and there is generally awell-ordered rank-
ing of the stability of different script (request) dimensions. However,
even if two scripts change in the same dimension, e.g., a data string
change, this does not guarantee the same change in execution. As
such, it is infeasible for a user agent to distinguish “subtle,” benign
changes frommalicious oneswithout additional knowledge. This mo-
tivates the need for a new protocol to provide clients the context that
is necessary to assess the potential ramifications of script changes.

A more immediate stopgap is to ensure the integrity of higher-
order elements (to address the challenge posed by scripts with dy-
namic URLs that may also change in content) or by positioning
the integrity mechanism such that it does not rigidly rely on the
location of a script. The former is similar to the approach used by
the strict-dynamic keyword in the Content-Security Policy (CSP)
standard [31], which establishes an explicit trust in an element and
then transitively trusts those that are trusted by the initial element.
The latter can be done by associating integrity artifacts with third-
party origins, as opposed to individual script URLs (e.g., defining the
set of allowed script signatures for a particular third party).

7.1 Looking Forward
Our work demonstrates that the problem of verifying the integrity
ofmodern JavaScript is complicated by a number of factors that each
exacerbate the overall issue, and that the current standard, SRI, is
lacking critical qualities. Scripts will continue to change frequently,
and do so in a variety of content-related, contextual, and seemingly
randommanners. If the modern web continues to lack a robust and
practical integrity verification mechanism, domain administrators

will continue to run the risk of having their users’ security and pri-
vacy compromised by a supply chain attack via malicious JavaScript.

Orthogonal to the design of a more robust integrity mechanism,
weargue thatasimplereporting feature inSRI, suchas thereport-to
directive in CSP [31], can enable administrators to gain visibility
into potential supply chain attacks and broken functionality, thus
preventing long-term SRI failures and misconfigurations.

7.2 Limitations
We acknowledge that our methodology has inherent limitations, but
we are confident in the high-level, stable findings thatwe report. The
most prominent limitation is that our findings are necessarily con-
strained by the scripts that are collected. A more intricate approach
to mask the signals that are unique to headless browsers could have
resulted in the collection ofmore scripts, and the choice of a different
headless browser (e.g., Firefox) might have yielded the collection of
different versions of scripts. In addition, we may have missed addi-
tional findings that can only be observed over a much longer period
of time (i.e., years), or in particular classes of scripts. We attempted
tomitigate these potential issues by, in part, mimicking full browsers
and performing the analysis over a period of a fewmonths.

Apart from this, we focused on “external” scripts from a third-
party origin, but it may be the case that two different origins are not
entirely external from one another (e.g., two subsidiaries of the same
entity). Although we did not account for this (using such concepts
as the extended same party [27]), we argue that the extent of the
isolation of such domains is entirely dependent on the configuration.

8 CONCLUSION
In this paper, we demonstrated the difficulty of properly ensuring
the integrity of scripts in the modern web with a large-scale study
of the script landscape. We conducted our experiments using a scal-
able and efficient architecture that enables a longitudinal study of
the manners in which scripts change, at the scale of the web. We
empirically demonstrated that frequently-changing scripts should
be considered first-class citizens of the web ecosystem, and that the
ways in which scripts change tend to remain constant over time.
Furthermore, we performed an analysis of the usability and appli-
cability of strict integrity at the granularity of the script providers
themselves, and discovered that it cannot achieve widespread use
nor provide satisfactory guarantees. Finally, we conclude that it is
infeasible for a client to distinguish benign changes frommalicious
ones without external knowledge, motivating the need for solutions
where clients are provided with the necessary context to assess the
potential ramifications of script changes.
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Appendices

A (RQ1)CONSISTENTPATTERNSOFCHANGE
In this section,we includeadditional analyses to shed lighton thecon-
sistent patterns of change from a high-level perspective of changes
in all scripts, and in scripts with dynamic URLs.
High-Level Perspective of Changes. We present a high-level
overview of all daily script changes throughout 77 days in Figure 6.
We consider four natural types of “changes” in scripts: scripts can
stay the same (in content), change (in content), disappear (i.e., not
encountered), or (re)appear. The first two are changes in raw content,
whereas the last two are changes in location, but they can also be
changes in content. Changes are computed on a day-to-day basis,
taking the set of script contents receivedwhile browsing a particular
domain 𝐷 on day 𝑑 and comparing it with the contents received
while browsing 𝐷 on day 𝑑−1. The x-axes in both plots represent
the relative time difference, in days, from the first day we observed
a script. Scripts are identified in a slightly different manner in both
plots: the upper plot identifies scripts in themanner described earlier
(by the script URL and the Referer), whereas the lower plot uses
the origin of the script URL instead of the script URL, in addition to
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Figure 6:Daily changes in scripts found while crawling our sample of domains.
We experienced some instability in our crawling infrastructure on day 38,
causing an artificially large spike in our data — the data points for this and
the following date have been smoothed to account for this.
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the Referer. In short, the upper plot considers changes in content
received from script URLs, whereas the lower plot considers changes
in content from script provider origins.

Takeaways: From Figure 6, we can infer that:
• dynamic script URLs in the same origin contribute to the dif-
ference in the behaviors of theDisappeared or (Re)appeared
buckets in the two plots.

• there are long-lived script URLs (and their origins), because
the four types of changes generally stabilize over time.

• there are “new” script identifiers that appear every day, even
though we are crawling the same set of pages, on the same
set of domains, because the number of scripts in theNot Yet
of Age bucket increases with time.

• URL identifiers are not as stable as URL origin identifiers,
because there are likelymany short-lived URL identifiers that
contribute to a significant portion of the Disappeared bucket
in the upper plot.

Content Changes in Dynamic-URL Scripts. We seek to inves-
tigate whether dynamic-URL scripts are not only changing their
locations, but also changing their content. In particular, we consider
dynamic-URL scripts from the top 10 domains that contributed the
most of them. However, because we do not have a reliable method of
identifying such scripts, we are unable to compare differences in con-
tent between two individual scripts. Instead,wegroup thesedynamic
URL scripts by the Referer, or the domain that we were crawling
whenwe observed these script requests. For each day, we extract the
structural signatures from all dynamic-URL scripts for each domain,
andwe compare the set of signatures with that of the prior day to ob-
tain ametric that describes the change in the two sets of signatures. If
a structural signature is present one day but not present the prior day,
it contributes +1; if a structural signature is not present one day but
present the prior day, it contributes−1. We then plot the distribution
of this metric for all domains over time and show our results in Fig-
ure 7. We observe that different domains exhibit different behavior:
some domains do not showmuch change in the set of script signa-
tureseveryday,whereasothersmightexperienceuptoa fewhundred
changes on a given day. Overall, scripts that have dynamic URLs can
also have dynamic content, which is a nontrivial complication to
integrity verification. We note that regardless of the choice of using
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Figure 7: Distribution of the number of changes in the set of structural
signatures in the sample of scripts with dynamic URLs every day. Dynamic
URL scripts also experience content changes.

the original structural signature or the augmented, no-literal version
that we used in Section 4, the resulting plots are nearly identical.

Takeaways: Scripts with dynamic URLs pose a distinct challenge
from the one presented by frequently-changing scripts with static
URLs, because dynamic-URL scripts can also change in content.

B (RQ2) PITFALLS OF STRICT INTEGRITY
In this section,we include additional analyses to shed light on the pit-
fallsof strict integrity throughanalyzing thepopularityof frequently-
changing scripts and the rankings of their providers.
PopularityofFrequently-ChangingScripts. Ifmost scriptsused
by websites are static, strict integrity could provide security guar-
antees in most cases. However, we find that a significant portion of
scripts changes frequently, regardless of the URL lifespan (an upper
boundon thenumber of changes). In Figure 8, aCDF for each lifespan
class is producedwith (𝑥,𝑦) values indicating that theURLs of scripts
that changed content more than 𝑥 times comprise𝑦 of all the unique
URLs of all scripts with the same lifespan. For scripts with static
URLs, 68% of their script URLs change their content at least once
within seven days (12 or more content changes); for scripts with a
URL lifespan of 60 days, it is 33% (nine or more content changes);
for scripts of 40 days, it is 41% (six or more content changes); and for
scripts of 20 days, it is 57% (3 or more content changes).

Takeaways: Regardless of the duration for which a script URL
appears on awebsite, it is muchmore likely for its content to change,
as opposed to remain static, throughout its appearance. We found
that 68% of the URLs of daily-observed scripts change content at
least once a week.
Rankings of Frequently-Changing Script Providers. It may be
concerning if the provider of a frequently-changing script has a low
popularity ranking. Although domain rankingmay not always be an
accurate proxy for its security posture, we can estimate that domains
that are very high ranked have a better posture than those that are
very low ranked [20]. We observe this split in the rankings for the
1,379 unique eTLDs of script providers for the 38,030 scripts that
change daily in Figure 9. Providers that were not ranked within the
Tranco top 1millionwere assigned the same rank above 1million and
appear in the same bin in the histogram.We note that the significant
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Figure 8: Reverse CDF of scripts by their number of content changes, grouped
by URL lifespan because it is an upper bound on the number of changes. Scripts
that change the most frequently comprise a large portion of the unique script
URLs, regardless of lifespan.
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portion of providers that are low-ranked — 809 (59%) low-ranked
providers deliver 1,979 (5.2%) daily-changing scripts — creates addi-
tional cause for concern, because it becomes even more imperative
to have an integrity verificationmechanism that can account for this
class of scripts.

Takeaways: If frequently-changing scripts cannot be handled by
integrity verification mechanisms, their providers are more likely to
be targeted in supply-chain attacks. The majority of such providers
with low rankings (59%) is concerning because this may indicate
they have weaker security postures.
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Figure 9: Distribution of the scripts that change every day and do not vary
by user agent or time, by the ranking of the eTLD of the provider. Many (59%)
providers are low ranked.
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