
Secrets are forever:
Characterizing sensitive file leaks on IPFS

Zhengyu Wu, Brian Kondracki, Nick Nikiforakis, Aruna Balasubramanian
Stony Brook University

Stony Brook, U.S.A
Emails: {zhenwu, bkondracki, nick, arunab}@cs.stonybrook.edu

Abstract—The InterPlanetary File System (IPFS) is an emerging
peer-to-peer hypermedia protocol designed to enhance the speed,
security, and openness of the web. Utilizing content-based addressing,
IPFS establishes a decentralized, distributed, and trustless network
for data storage and delivery. Despite its growing popularity,
the inherent openness of IPFS raises concerns about accidental
sharing of sensitive files, posing potential threats to user privacy
and security. In this paper, we conduct a measurement study to
investigate the extent of sensitive file sharing on the IPFS network.

Using IPFS-search, a widely-used search engine indexing
IPFS content, we identified over 2,000 files containing sensitive
information such as API keys and private SSH keys. However,
as IPFS-search operates on a centralized infrastructure, access
restrictions may limit opportunistic attacks. To demonstrate the
feasibility of identifying sensitive content, we deployed two IPFS
nodes, recording file announcements from nearby peers, and
identified over 700 sensitive files.

Furthermore, we deployed honeypot IPFS nodes to gauge
potential exploitation of these sensitive files by malicious actors over
a six-month period. Our findings indicate that while sensitive files
are indeed being shared on the IPFS network, there is currently no
evidence of exploitation by attackers. However, with the increasing
popularity of IPFS, the risk of such attacks is likely to rise. Our study
underscores the importance of acknowledging the risks associated
with sharing files on the IPFS network. As IPFS continues to gain
traction, proactive measures must be taken to address vulnerabilities
and safeguard sensitive data from potential exploitation.

I. INTRODUCTION

The InterPlanetary File System (IPFS)[1] is a peer-to-peer
distributed storage platform that utilizes decentralized, trustless
data storage backed by a distributed hash table. A recent
study[2] highlights IPFS’s popularity, noting over 3 million web
client accesses and billions of daily file shares across more than
300K unique nodes. The platform’s broad adoption includes
uses from transferring Netflix docker images [3] to native
support in browsers like Chromium, Brave, and Opera as an
HTTP alternative [4], [5], [6]. IPFS also supports decentralized
web applications, social networks, and content search [2].

Given IPFS’s decentralized nature, we investigate whether
users inadvertently share sensitive files on the platform. Research
indicates that file-sharing platforms often host private data
inadvertently [7], [8], [9]. On IPFS, shared files are public and
retrievable by their Content Identifier (CID), allowing access
to anyone with the CID. Even if users remove files, they can
persist in the network through caching by intermediate nodes,
heightening privacy risks.

To address these issues, we conduct a measurement study
and security analysis on sensitive file sharing within IPFS.
We define sensitive information as data such as passwords,

private keys, and API keys, which if compromised, could
enable unauthorized access, financial fraud, or other malicious
activities. This study aims to understand the scope of sensitive
data exposure and its implications on IPFS.

The main challenge with IPFS is its extensive network size,
making it infeasible to search through all files across all peers. We
utilize IPFS-search [10], a community-built search engine, similar
to Google, which indexes metadata of files without needing
their CIDs. This search engine connects to over 40 IPFS nodes
worldwide, indexing roughly half a million documents daily.
To effectively search for sensitive content within these indexed
files, we implemented a series of increasingly complex filters
to reduce the occurrence of benign files. This approach includes
keyword matching, regular expression matching, and manual
inspections to refine the results and remove false positives.

Over a three-month period, we analyzed files using
IPFS-Search and identified 10,777 files potentially containing
sensitive content. Through our filtering process, we discovered
129 private keys and 23 API keys in uncompressed files, and
1,788 sensitive files in compressed code repositories, mainly
containing hardcoded API keys. These keys could enable
unauthorized access, posing severe risks to businesses [11].

We also evaluated the security risks from attackers potentially
setting up their own IPFS nodes to find sensitive files. Over four
months, using two vantage points, we identified 752 sensitive files,
demonstrating the limitations of IPFS-Search’s safety measures
and emphasizing the need for more robust security strategies.

Further, we traced sensitive files back to their original
repositories to understand the persistence of sensitive data on
IPFS. We found that while 60% of sensitive files in GitHub
repositories had been patched, these patched files remained
accessible on IPFS. Similarly, 40% of sensitive Node.js files
had been patched in their respective online repositories. As
part of our responsible disclosure process, we contacted
repository owners to help them address these security issues.
We continue to update them with our findings to help mitigate
risks associated with leaked sensitive information.

Finally, our honeypot experiment aimed to determine if
attackers are exploiting sensitive files on IPFS. We deployed
500 decoy files across five locations and monitored them for
six months. Our findings showed no attempts by attackers to
exploit these files, indicating that the IPFS network has not
yet been targeted for such activities.

To conclude, our study reveals the presence of sensitive
files being shared on IPFS. These files can be discovered by
leveraging centralized search services like IPFS-search using an
opportunistic approach. Furthermore, our findings highlight thatISBN 978-3-903176-63-8 © 2024 IFIP

the implementation of safety restrictions within these centralized
services does not fully mitigate the risk of sensitive file exposure.
Attackers can circumvent these restrictions by deploying their
own search instances. As the IPFS ecosystem continues to
evolve, it becomes crucial to address these vulnerabilities and
develop robust security mechanisms to protect against the
sharing and discovery of sensitive files.

II. BACKGROUND AND MOTIVATION

A. InterPlanetary File System
In this section, we provide some background on IPFS. The

global IPFS network is a peer-to-peer network consisting of
IPFS nodes. Each IPFS node runs the IPFS protocol and is
connected to each other over the WAN. At initialization, each
node is assigned a cryptographic hash called Peer ID. The IPFS
nodes know a subset of all the peers in the global network and
will use these peers to search for content.

Unlike traditional URL-based protocols such as HTTP, IPFS
uses content-based addressing. IPFS nodes generate a Content
Identifier (CID) for each file, which is the hash of the content
of the file. The CID along with its provider ID (i.e., the node
that has a copy of the content) form a provider record which
is stored in a Distributed Hash Table (DHT). This DHT is used
to efficiently find the provider record for any CID. At a high
level, an IPFS node that wants to retrieve the content of a CID
calculates the k closest peers to the CID. The node then asks
these peers for the CID’s provider record. If the provider record is
not located within the k closest peers, each peer in turn contacts
their k closest peers and so on until the provider record is found.

B. Motivation: Implications of IPFS File Sharing
At its core, the IPFS platform is used to store and share

content publicly. This means that a file that is shared over IPFS
can be retrieved by anyone if they have the CID. This design
choice has an impact on security.

For example, a typical URL like https://example
.com/example.txt provides straightforward, public access
to example.txt. In contrast, a cloud system like OneDrive
secures files on its servers, releasing them only through URLs
that include secret tokens, like https://onedrive.liv
e.com/?cid=PGK0TQ6YI0T01AWW&id=PGK0TQ6YI0T
01AWW%2198521. This allows file owners to control access
explicitly. However, in the case of IPFS, the URL parameter
looks like a secret token, but the parameter is the file’s CID. An
example would be https://ipfs.io/ipfs/QmbFMke
1KXqnYyBBWxB7L4N4c5SBnJMVAiMNRCGu6x1AwQH.
The CID is announced by IPFS nodes to their closest peers
(§ II-A) when the file is added to the network. Unlike OneDrive,
anyone with access to the CID can access the content of the file.

The similarity between OneDrive’s secret tokens and IPFS’s
CIDs may cause users to conclude that their files are private
and thereby lead them to share private files on the platform,
without realizing the implications of that sharing. Similar issues
have been observed by other studies on file-sharing platforms
[7] where seemingly private-file links can be discovered and
accessed by attackers. Further, as discussed earlier, the replication
feature of IPFS allows anyone with the CID to download and
re-host the content. Combined with the fact that no central
authority can force the take-down of content, sensitive files

can remain in the network indefinitely, even after their original
owners realize their mistake and delete their sensitive files.

In this paper, we characterize the extent of sensitive file
sharing on IPFS and discuss its implications in the context of
malicious actors opportunistically seeking to identify and gain
access to sensitive content.

III. SENSITIVE FILE LEAKS ON IPFS
Our goal is to detect files on IPFS containing sensitive data,

defined here as passwords, API keys, cryptographic keys, and
crypto-wallets. Studies on GitHub and other repositories use a
similar definition, though they typically exclude crypto-wallets.
Given IPFS’s significant use in blockchain contexts, we include
crypto-wallets in our scope [12], [13].

The volume of data shared daily on IPFS is significant,
with Protocol Lab reporting over 1 billion new CIDs each day.
Consequently, it is impractical to contact all peers and retrieve
every file [14], [15].

Our approach utilizes IPFS-search, a platform similar to
search engines like Google, designed to locate content within
the IPFS network. IPFS-search uses custom nodes to detect file
shares, retrieve content, and catalog metadata such as file type
and title. This metadata is indexed in the IPFS-search database,
which processes about 500k documents daily and provides an
API for document queries [15].

Although IPFS-search covers only a portion of the IPFS
network, our analysis reveals significant sensitive file leaks,
demonstrating its effectiveness despite its limited scope.

A. Methodology
Even with the use of IPFS-search, any automated technique

that identifies sensitive file leaks can result in a large number
of false positives. Manual analysis, while accurate, cannot
scale to the vast number of files on IPFS. To address this, we
apply progressively complex filters, illustrated in Figure 1. Each
filter aims to reduce the number of files potentially containing
sensitive content.

Fig. 1: Different filtering stages to find sensitive files

a) File-extension and Keyword-based filtering
Using IPFS-search API, we perform queries based on file

extensions and keywords that indicate sensitive content, such
as .key, .crt, .ppk, and .rsa, along with phrases like BEGIN
PRIVATE KEY [12]. We focus this initial filter on metadata
rather than the complete content, collecting files from September
21, 2022, to November 30, 2022.

b) Regular expression mapping
We refine our search using regular expression mapping to

pinpoint specific content that indicates sensitivity, such as
private keys and API keys, expanding on the methods from
previous studies [12], [13].
Private Keys: We incorporate regular expressions for SSH
and DSA keys into our detection methods as these key types

are frequently leaked in IPFS files [12], [13]. Details of these
expressions are provided in Table VI in the Appendix.
API Keys across platforms: We use a set of 13 regular
expressions to identify API key leaks, crucial for maintaining
service security. The impact of such leaks is significant, as they
can enable unauthorized transactions or access to services [12].

c) Removing false positives

To minimize false positives, we compare the hash of each
file against all matched files to remove duplicates. Additionally,
we manually review files that appear in different formats, such
as JSON and YAML, ensuring our final dataset reflects a unique
and accurate count of sensitive files.

B. Sensitive leaks in IPFS files: Results

In total, we downloaded 10,777 files of different MIME
types that match our extension/keyword-based filtering. Table I
classifies the top file categories. Based on the MIME type, the
majority of the files are either compressed files (62%) or plain
text files (37%). We separate the compressed and uncompressed
files and identify sensitive leaks within each set.

TABLE I: Top 10 MIME Type for 10,777 files downloaded from
IPFS-search using the first keyword-based filter

MIME Type Count MIME Type Count
gzip 4,353 epub+zip 176
plain/text 2,449 octet-stream 84
zip 2,178 html 73
json 902 x-java 35
pgp-signature 396 x-c 34

other (pgp-keys, python, x-c++ ...) 124

Sensitive file leaks in plain text files

First, we analyze the non-compressed plain text files by
applying regular-expression filters. We found 236 file matches
with 149 private key matches and 87 matches on API keys.
After removing the false positives we identified 129 unique
private keys and 23 unique API key matches.

Table II shows the type of private key leaks. 60% of the leaks
are RSA private keys, 17% are SSH keys, and the rest of other
keys. While the key itself does not contain any host information,
the attacker could do further reconnaissance (e.g. from which
node was the file retrieved [16]) to identify the specific hosts
that could be exploited using these stolen keys. For API key
matches, we identified 23 unique API keys belonging to various
services, shown in Table III. Most of the credentials are from
Google and are all hardcoded into source-code files to interact
with Google’s services.

Sensitive file leaks in compressed files

We next look at compressed files that match our keyword
filters. The files were largely code repositories. Out of the 6,716
compressed files, 61% (4,075) are Node.js libraries from npm,
29% (1,969) are GitHub Go libraries, 6.8% (461) contain some
source code in the directory, and the rest are categorized as
“other” (i.e., compressed files that are not code repositories).

In total, we identified 9,119 sensitive files based on our
regular expression mapping; after removing duplicates, we
identified 8,309 unique sensitive files. However, there are still

TABLE II: A total of 149 private
key matches were found using the
regular expression matching out
of which 129 were unique matches
(post false positive removal).

Private Key Type Total Match Unique Match

RSA 82 77
SSH 36 22
General 25 24
EC 4 3
DSA 2 2
PGP 1 1

TABLE III: A total of 87 API
key matches were found using the
regular expression matching, and
23 unique key matches were found
after removing false positives.

Platform/API Total Match Unique Match

Google OAuthID 25 10
Google API 21 7
Amazon AWS 24 4
Stripe Standard API Key 17 2

false positives since repositories have testing code with valid
matches that are not necessarily used in production. For example,
the code may contain an example file or a test file with a dummy
key. To reduce these false positives, we implement an additional
filtering strategy where we examine the path of each matched file.
If the path or the filename contains one of test, example, dummy,
sample, or readme, we consider them as false positives. After
the filtering, we identified 1,788 files with sensitive information.

Fig. 2 shows the distribution of each regular expression
match after the filtering. The majority of the sensitive leaks
involve Google OAuth IDs (36%) and GoogleAPI keys (18%).
The presence of these hardcoded credentials in compressed
files matches our earlier observation of hardcoded credentials
in non-compressed files. As before, if any of these files fall
into the hands of attackers, they can be abused to launch
attacks against the owners of the corresponding applications.
For instance, previous studies have shown various attacks using
OAuth leaks [17], [18], [19], [20].

C. Case study: Leaks in repositories
In our aforementioned analysis, we discovered 4,075 Node.js

libraries and 1,969 GitHub Golang library repositories. Sharing
libraries over IPFS has additional security implications. Prior
work has established that developers inadvertently include
sensitive information in code repositories [12]. In the context
of this work, if the owner or another user with access to a
repository with sensitive information uploads the codebase to
IPFS, the sensitive information can persist indefinitely, even after
the leak is identified and removed from the original repository.
Similarly, if a developer decides to make their repository private,
a version of that repository can still be obtained over IPFS.

As a case study, we analyze Node.js and GitHub files shared on
IPFS and compare them to their corresponding public repositories.
All repositories are publicly available on GitHub, suggesting their
intended public nature. In addition, in our responsible disclosure
VI, we inform the repository owners about any sensitive leaks

TABLE IV: Repositories status for Node.js and GitHub Golang
libraries shared on IPFS.

Type Libraries found on IPFS Unique Libraries Corresponding repository found Online

Node.js Library 4,075 1,835 1,727
GitHub Golang Library 1,969 1,043 990

1) Identifying online GitHub/Node repositories
Table IV shows the status of both library types. We identified

1,835 unique Node.js libraries and 1,043 unique GitHub libraries
shared on IPFS that have sensitive information (after deleting dif-
ferent versions of the same library). For Github Golang libraries,
we tracked 990 of the 1043 libraries to their corresponding

repositories on GitHub online. The remaining 53 were not
searchable using the GitHub API. We then queried the owners of
these repositories and found that 48 of the owners are still active
on GitHub. So we speculate that these repositories were either
moved to private repos, or the owners deleted these repositories.
For Node.js repositories, for 1,727 of the 1,835 libraries shared
on IPFS, we were able to track the original repository.

2) Comparing sensitive leaks on IPFS and the original repository

We next compare each sensitive file shared on IPFS with
the original online repository (Node.js or GitHub). The goal
here is to characterize the persistence of these sensitive files; in
other words, to find if the repository owner removed or patched
the sensitive files in the online version. For this study, we focus
on warnings regarding Amazon AWS and RSA private keys
as they have distinct characteristics.

We categorize the differences as follows:
• Sensitive information persists: Sensitive information is

present in both the IPFS library and the original repository.
• Sensitive information patched: Sensitive information is

present in IPFS but does not exist in the original repository
(i.e., the file is patched).
• Sensitive information patched, but new sensitive

information present: Sensitive information is present in
IPFS. This sensitive information does not appear in the
original repository but the repository has new and different
sensitive leaks.
• Sensitive information removed: Sensitive information
is present in IPFS. But the file that contains sensitive
information does not exist in the original repository.

We found for GitHub’s repository, nearly 60% of all sensitive
information is no longer available. Of these, for over half
of them, the original file with sensitive leaks is removed
from the GitHub repository’s latest version. For the Node.js
repository, 70%, of the sensitive information are unchanged. But
for information that is changed, the majority of the sensitive
information is removed. This difference between GitHub and
Node.js is likely because developers are more active on GitHub
and fix warnings more frequently.

Further, for all IPFS repositories that contain sensitive infor-
mation, we compare the time difference between the version that
was shared on IPFS and the newest online repository version. We
identified that over 50% of the cases, the IPFS version is at least
two years older than the current online version. This indicates
that the sensitive leaks on IPFS can persist for an extended
period of time (as long as at least one node retains a copy of the
sensitive file). This also shows that pruning the older versions
of code from GitHub to deal with secret leaks is insufficient.

D. Deploying our own monitoring

In the previous section, we used the IPFS-search infrastructure
to identify sensitive information leaks. However, IPFS-search
is a centralized service and can potentially use filtering or other
techniques to stop opportunistic attackers from trivially finding
sensitive files.

An alternative technique for attackers is to deploy their own
IPFS network monitoring, thereby bypassing any content filtering
done by the IPFS-search infrastructure. To characterize the

volume of sensitive information attackers could potentially gather
using their own IPFS-search instances, we deployed two instances
(both on US East Coast) from August 1, 2022, to November 30,
2022. Due to the limitation of the disk space, we only downloaded
files that are plain text and compressed files, as they are the
most dominant file type from our IPFS-search study (§III-B). In
total, we downloaded 1,678,170 files out of 3.1 million unique
CIDs collected and most of the files are JSON data files likely
because developers use IPFS to share web-related content.

We then applied the methodology described in §III-A. In all,
we identified 105 unique files that contain sensitive information.
The most frequent leak across non-compressed files are Google
API Keys which is similar to our observation when using IPFS-
search. Among the 24,331 compressed files, we identified 647
unique files that contain sensitive information. The majority of the
sensitive file leaks are Google OAuth ID and Google API keys,
again, similar to the study of the sensitive file using IPFS-search.

E. IPFS file availability over time
One of the unique features of IPFS is that files can be cached

and replicated throughout the network. On the other hand, a
previous study [2] shows that the churn rate of IPFS providers
is high. This means providers join and leave the IPFS network
relatively quickly, which means that providers may become
unavailable quickly. This in-turn affects the availability of files.

To characterize the availability of sensitive files over a long
period of time, we conducted the following experiment: for each
sensitive file we identified on IPFS, we searched for the file
after a 6-month gap. We conducted this experiment for 1,033
CIDs that we identified as sensitive files from both IPFS-search
and our own deployment. We found that even after 6 months,
over 40% of the files have at least one provider, which means
they are still available. More importantly about 20% of the
sensitive files have more than one provider; with an extreme
case of over 20 providers having a copy of a sensitive file. This
result further indicates that once sensitive leaks appear on IPFS,
they can persist for an extended time.

F. Takeaway
Our analysis confirms the presence of sensitive files being

shared on IPFS, where such sharing can occur accidentally
or due to a misunderstanding regarding the public nature of
IPFS content.The majority of the identified sensitive files were
compressed files associated with code repositories, with API keys
being the most commonly leaked information. Exposure of even
a single secret from code repositories can have a catastrophic
impact on business operations. For instance, the SolarWinds
attack, which affected Fortune 500 companies and multiple US
government agencies, is believed to have originated from the
attacker discovering a weak password within a GitHub repository
[21]. This example underscores the importance of safeguarding
sensitive information. We also show that, a malicious user can de-
ploy their own IPFS instance with just two vantage points and can
identify hundreds of IPFS files that contain sensitive information.

IV. GAUGING MALICIOUS ACTIVITY ON IPFS
In the previous sections of this paper, we investigated the

population of sensitive files on IPFS and highlighted the potential
that these files provide to prospective attackers. At the same

time, just because attackers could be using the IPFS network to
steal sensitive content, does not necessarily mean that they are
currently engaging in that activity. To this end, in this section, we
report on the findings of deploying our own honeypot experiment
involving fake sensitive files (called decoy files) that lead back
to monitored infrastructure under our control. Researchers have
been using the concept of honeypots for over three decades [22],
[23], [24], [7], deploying fake files and fake infrastructure for the
express purpose of being compromised, so that attackers can be
studied while keeping them away from real production systems.

A. Setup

To set up the honeypot experiment, we craft different types
of decoy files that will be uploaded to the IPFS network:

• HTML: the file contains a redirect link (also known as a
“beacon”) which will notify us that the file was opened.

• Microsoft Word, PDF: the file contains login credentials
to our honeypot server. In addition, the file embeds a beacon
that will trigger upon opening the document.

• SSH Private Keys: the private key can be used to directly
login to our honeypot server.

• Cryptocurrency wallet: contains seed/private-key data
allowing attackers to steal a small amount of funds.

• Control files: randomly generated files.

To further attract attackers, all the files are given attractive
naming such as online logins, password backups, etc.

B. Data generation

To simulate accidental leaks we utilized an online fake
information generator 1 to generate 300 unique people with
usernames, passwords, as well as fake banking information.
Further, we registered 5 domain names and point them to our
honeypot server so that each password login leak corresponds
to one of these domain names.

C. Deployment

To upload the decoy files to the IPFS network, we deployed
5 IPFS nodes in the US, UK, Brazil, Japan, and Australia
and uploaded 20 HTML, PDF, Microsoft Word, and SSH
Private keys from each node. We also uploaded 30 control
files and one wallet file. Since IPFS uses content addressing,
when a single file is uploaded to the network, the file name
will not be retained. To address this downside (downside in
terms of discoverability by prospective attackers), we utilized
the so-called wrapped option 4 which will wrap the file into
a single directory and thus retain the filename when uploaded.
The honeypot server was deployed in the US.

Each IPFS node re-announces the provider record to its peers
every 12 hours. Further, for every 12 hours each IPFS node
will retrieve all the decoy files from the other four so that the
CID will spread across the network.

1https://www.fakenamegenerator.com/
4https://docs.ipfs.tech/reference/kubo/cli/#ipfs-add

D. Results
We deployed our honeypot from August 5, 2022, to February

16, 2023. In total, we observed that 56 decoy files were down-
loaded across various categories. Figure 3 shows the downloaded
file-type distribution with respect to each IPFS node, where no
clear download pattern emerges. While our decoy files were down-
loaded by a number of IPFS peers, we did not observe any mali-
cious action against our honeypot server. To understand the char-
acteristics of the peers who downloaded our files, we used their IP
addresses to obtain geolocation and ASN information. The major-
ity of these clients were located in Germany (shown in Figure 4)
and the ASes belong to Hetzner Online GmbH. We confirm that
these peers are IPFS-search nodes using a reverse DNS lookup.

E. Takeaway
At the time of our honeypot experiments, we observed only

machine-to-machine traffic to our IPFS nodes, and the majority
of our files were indexed by IPFS-search. While this is good
news for the owners who leak files that contain sensitive content
on IPFS, however, these files can stay on IPFS indefinitely,
essentially waiting for future attackers to discover them.

V. RELATED WORK

Studies on IPFS have mainly focused on evaluating IPFS
performance [2], network size [25], the transport layer protocol
Bitswap [26], and I/O performance [27]. There are fewer studies
on the security implications of IPFS. One study identifies
critical security issues regarding Sybil and Eclipse attacks on
the IPFS network [28]. The study found that a single attacker
can manipulate the network by generating massive peer IDs and
flooding the network. Once the network is saturated with fake
peers, then the attacker can advertise fake routing information
to the victim’s IPFS nodes and isolate the victim from the
network. Another study focused on how IPFS is being utilized
by ransomware services [29] where attackers host Web pages
that ask for ransom on IPFS, benefiting from the robustness
and resilience of IPFS. Related research has also discovered
that botnets deployed into the IPFS networks enable attackers
to exert fine-grained control over their victims [30].

To the best of our knowledge, while studies exist for
characterizing the presence of sensitive content on centralized
platforms (such as Github [12] and file-hosting services [7]),
there has been no study of sensitive-file sharing on IPFS. The
core functionality of IPFS and its intended use for building
decentralized applications makes it different from GitHub and
therefore meriting its own investigation.

VI. ETHICS

Even though all the files that we accessed in this study are by
definition public, the entire premise of this paper is that some
of the files stored on IPFS are sensitive in nature. As such, in
this section, we describe how we conducted our experiments
to ensure that we preserve the privacy of users and the overall
ethics of our work.

Our focus is solely on identifying whether sensitive files
are being shared on IPFS, without revealing the providers (i.e.
potential users) of these files. Throughout our data collection
process via IPFS-search and our own search instance, we
retrieved files without recording any information about the

Fig. 2: Among the compressed gzip and zip
files, 1788 contained sensitive information

Fig. 3: Downloaded decoy files distribution
for each deployed IPFS node. Not every file
is retrieved by other peers.

Fig. 4: All IP Geo-location for peers
downloaded decoy files with respect to each
deployed IPFS node.

providers, ensuring their privacy. We also took measures to
prevent the unintentional spreading of these files by configuring
our IPFS nodes to refrain from caching and redistributing them.
This approach minimized our impact on the ecosystem and
avoided further propagation of potentially sensitive files.

Moreover, due to ethical considerations and the vast volume of
collected files, we relied on pattern detection using regular expres-
sions to identify sensitive files. This approach reduced the need
for manual analysis of sensitive files outside of the ones contain-
ing API keys, encryption keys, etc. Additionally, we removed all
collected files post-analysis to maintain data integrity and privacy.

Finally, responsible disclosure was another key aspect of our
study. We notified repository owners about sensitive leaks within
code repositories via email and offered assistance to address
these issues. We contacted 59 individual developers for Golang
libraries. However, due to limitations with the Node.js repository,
we were unable to contact its owners. This responsible disclosure
provides developers with an opportunity to patch vulnerabilities,
such as obtaining new API keys, thereby enhancing the overall
security and privacy of the IPFS file ecosystem. We will update
the paper with any responses from developers.

VII. DISCUSSION AND LIMITATION

First and foremost, files indexed by IPFS-search and files
found using our own deployment are only a fraction of all the
files available on IPFS. As such, this work does not measure
an upper bound on sensitive leaks on IPFS. Interestingly, even
with the limited vantage points that we deployed, we were able
to reveal that considerable sensitive leaks do occur on IPFS.
New research is needed to explore the extent of sensitive file
leaks on IPFS. We will release our measurement and analysis
code for other researchers to build on.

Additionally, the regular expressions we used to identify
sensitive files were restricted to well-defined domains. However,
sensitive leaks can vary from person to person such as passwords,
phone numbers, or personal identification information. For
example, during our manual inspection, we found some
configuration files containing credentials from one-off platforms,
such as database credentials and cryptocurrency-exchange
API keys. It is difficult to identify these leaks using regular
expressions because of the number of regular expressions that
will be needed to cover these one-off security keys. Expanding

the study to search for these additional credentials will further
increase the number of sensitive files we can uncover. Similarly,
our honeypot experiment focused on a limited set of well-defined
sensitive files over a brief observation period; a broader range of
file types and a longer duration could yield further discoveries.

Finally, we address potential solutions for enhancing file-
sharing privacy on the IPFS network. One such proposal, sug-
gested by Protocol Lab, the main contributor to IPFS, is the DHT
Reader Privacy Upgrade [31]. This initiative aims to improve
privacy by encrypting CID requests during file announcement and
retrieval processes. Currently, when a user requests CID content,
the IPFS node forwards the request to nearby peers, potentially
revealing the requested CID. With encryption, however, the CID
remains concealed, preventing peers from recording it. This
enhancement is expected to bolster the anonymity of sensitive
files by limiting the exposure of CIDs to peers. It’s important
to note that this idea is still in the proposal phase and has not
been implemented or validated. In our future research, we plan
to assess the effectiveness of the DHT Reader Privacy Upgrade,
evaluating both its performance and its ability to protect privacy.

VIII. CONCLUSIONS

InterPlanetary File System (IPFS) is a peer-to-peer hypermedia
sharing protocol with the stated goal of making the web faster,
safer, and more open. With its rising popularity and openness,
our work aims to answer the following question: Are users
inadvertently sharing sensitive files on IPFS?

To answer this question, we conducted a measurement study
to identify sensitive file leaks. We use IPFS-search, a community-
built search engine, as our vantage point, and show that there are
thousands of IPFS files that are publicly accessible that share sen-
sitive information including private cryptographic keys and API
tokens. Even if a platform like IPFS-search restricts users from
searching for sensitive files, we show that, a malicious user can
deploy their own IPFS vantage points to search for sensitive files
on IPFS. With only 2 vantage points and over a 4 month period,
we identified hundreds of sensitive files. Finally, to investigate
whether sensitive files are being actively exploited by attackers,
we deployed honeypot IPFS nodes that upload decoy files onto
the IPFS network. Even though we observed decoy files being
downloaded by other peers, no malicious actions were performed
using the sensitive content. Our work concludes that sensitive files

are in fact currently shared through IPFS, even though they are
not being weaponized by bad actors yet. Given the growing pop-
ularity of IPFS and decentralized platforms, our study shows that
public sharing of sensitive content on these platforms warrants
the attention and additional research by the community, in order
to devise methods that protect users while not compromising
on the decentralized nature of the underlying protocols.

IX. ACKNOWLEDGEMENTS

We thank all the reviewers for their constructive feedback.
This work was supported in part by NSF grants CNS-1941617,
CNS-2211575, and CNS-1909356.

REFERENCES

[1] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[2] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of ipfs: a storage layer
for the decentralized web,” in Proceedings of the ACM SIGCOMM 2022
Conference, 2022, pp. 739–752.

[3] E. L. Dirk McCormick, “New improvements to ipfs bitswap for faster
container image distribution,” https://blog.ipfs.io/2020-02-14-improved-
bitswap-for-container-distribution/, 2020.

[4] “Adding ipfs protocol support to chromium,” Nov 2022. [Online].
Available: https://blog.ipfs.tech/14-11-2022-igalia-chromium/

[5] B. Bondy, “Ipfs support in brave,” https://brave.com/ipfs-support/, 2021.
[6] S. Batt, “Your files for keeps forever with ipfs,” https://blogs.opera.com/tips-

and-tricks/2021/02/opera-crypto-files-for-keeps-ipfs-unstoppable-
domains/, 2021.

[7] N. Nikiforakis, M. Balduzzi, S. Van Acker, W. Joosen, and D. Balzarotti,
“Exposing the lack of privacy in file hosting services,” LEET, 2011.

[8] B. Kaleli, M. Egele, and G. Stringhini, “On the perils of leaking referrers in
online collaboration services,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, R. Perdisci, C. Maurice, G. Giacinto, and M. Alm-
gren, Eds. Cham: Springer International Publishing, 2019, pp. 67–85.

[9] M. E. Johnson, D. McGuire, and N. D. Willey, “The evolution of the
peer-to-peer file sharing industry and the security risks for users,” in
Proceedings of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), 2008, pp. 383–383.

[10] “Ipfs search.” [Online]. Available: https://ipfs-search.com
[11] D. Goodin, “Thousands of servers found leaking 750mb

worth of passwords and keys,” Mar 2018. [Online]. Available:
https://arstechnica.com/information-technology/2018/03/thousands-of-s
ervers-found-leaking-750-mb-worth-of-passwords-and-keys/

[12] M. Meli, M. R. McNiece, and B. Reaves, “How bad can it git?
characterizing secret leakage in public github repositories.” in NDSS, 2019.

[13] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, “Detecting
and mitigating secret-key leaks in source code repositories,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 396–400.

[14] D. Trautwein, “Network-measurements/results/rfm21-hydras-performance-
contribution.md at master · protocol/network-measurements,” Jan 2023.
[Online]. Available: https://github.com/protocol/network-measurement
s/blob/master/results/rfm21-hydras-performance-contribution.md

[15] S. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping
the interplanetary filesystem,” in 2020 IFIP Networking Conference
(Networking), 2020, pp. 289–297.

[16] L. Balduf, S. Henningsen, M. Florian, S. Rust, and B. Scheuermann,
“Monitoring data requests in decentralized data storage systems: A case
study of ipfs,” in 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2022, pp. 658–668.

[17] S. Farooqi, F. Zaffar, N. Leontiadis, and Z. Shafiq, “Measuring
and mitigating oauth access token abuse by collusion networks,” in
Proceedings of the 2017 Internet Measurement Conference, ser. IMC
’17. New York, NY, USA: Association for Computing Machinery, 2017,
p. 355–368. [Online]. Available: https://doi.org/10.1145/3131365.3131404

[18] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security
analysis of oauth 2.0,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
1204–1215. [Online]. Available: https://doi.org/10.1145/2976749.2978385

[19] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
An empirical analysis of oauth sso systems,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, ser. CCS
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 378–390. [Online]. Available: https://doi.org/10.1145/2382196.2382238

[20] T. Lodderstedt, M. McGloin, and P. Hunt, OAuth 2.0 Threat Model and
Security Considerations, Jan 2013, no. RFC 6819. [Online]. Available:
https://datatracker.ietf.org/doc/rfc6819/

[21] G. Sands, Brian Fung, “Former solarwinds ceo blames intern for
“solarwinds123” password leak — cnn politics,” Feb 2021. [Online].
Available: https://www.cnn.com/2021/02/26/politics/solarwinds123-pas
sword-intern/index.html

[22] C. Stoll, The cuckoo’s egg: tracking a spy through the maze of computer
espionage. Simon and Schuster, 1990.

[23] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to intrusion
detection. Pearson Education, 2007.

[24] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting
inside attackers using decoy documents,” in Security and Privacy
in Communication Networks: 5th International ICST Conference,
SecureComm. Springer, 2009, pp. 51–70.

[25] E. Daniel and F. Tschorsch, “Passively measuring ipfs churn and network
size,” in 2022 IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW). IEEE, 2022, pp. 60–65.

[26] A. De la Rocha, D. Dias, and Y. Psaras, “Accelerating content routing with
bitswap: A multi-path file transfer protocol in ipfs and filecoin,” 2021.

[27] J. Shen, Y. Li, Y. Zhou, and X. Wang, “Understanding i/o performance
of ipfs storage: a client’s perspective,” in Proceedings of the International
Symposium on Quality of Service, 2019, pp. 1–10.

[28] B. Prünster, A. Marsalek, and T. Zefferer, “Total eclipse of the heart–
disrupting the {InterPlanetary} file system,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 3735–3752.

[29] C. Karapapas, I. Pittaras, N. Fotiou, and G. C. Polyzos, “Ransomware as
a service using smart contracts and ipfs,” in 2020 IEEE International Con-
ference on Blockchain and Cryptocurrency (ICBC). IEEE, 2020, pp. 1–5.

[30] A. T. Research, “The interplanetary storm: New malware in
wild using interplanetary file system’s (ipfs) p2p network,”
https://www.anomali.com/blog/the-interplanetary-storm-new-malware-
in-wild-using-interplanetary-file-systems-ipfs-p2p-network, 2019.

[31] [Online]. Available: https://github.com/ipfs/specs/pull/373

APPENDIX

A. Regular Expressions

TABLE V: Regular expressions targeting different service platforms’
API Key

Platform/API Key Type Target Regular Expression

Amazon AWS Access Key ID AKIA[0-9A-Z]{16}

Amazon MWS Auth Token amzn\.mws\.[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}

Google API Key AIza[0-9A-Za-z\-]{35}
OAuth ID [0-9]+-[0-9A-Za-z]{32}\.apps\.googleusercontent\.com

Stripe Standard API Key sk live [0-9a-zA-Z]{24}
Restricted API Key rk live [0-9a-zA-Z]{24}

Square Access Token sq0atp-[0-9A-Za-z\-]{22}
OAuth Secret sq0csp-[0-9A-Za-z\-]{43}

PayPal Braintree Access Token access token$production$[0-9a-z]{16}$[0-9a-f]{32}

Meta Access Token EAACEdEose0cBA[0-9A-Za-z]+

Twilio API Key SK[0-9a-fA-F]{32}

MailGun API Key key-[0-9a-zA-Z]{32}

Picatic API Key sk live [0-9a-z]{32}

TABLE VI: Regular expression to identify private keys and they have
a distinct structure mainly due to their PEM header

Asymmetric Key Type Target Regular Expression Asymmetric Key Type Target Regular Expression

RSA Private Key

—–BEGIN RSA PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END RSA PRIVATE KEY—–

PGP Private Key

—–BEGIN PGP PRIVATE KEY BLOCK—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+=
[0-9a-zA-Z+\/=]{4}[\r\n]+

—–END PGP PRIVATE KEY BLOCK—–

EC Private Key

—–BEGIN EC PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END EC PRIVATE KEY—–

SSH Private Key

—–BEGIN OPENSSH PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END OPENSSH PRIVATE KEY—–

DSA Private Key

—–BEGIN DSA PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END DSA PRIVATE KEY—–

General Private Key

—–BEGIN PRIVATE KEY—–
[\r\n]+(?:\w+:.+)*[\s]*

(?:[0-9a-zA-Z+\/=]{64,76}[\r\n]+)+
[0-9a-zA-Z+\/=]+[\r\n]+

—–END PRIVATE KEY—–

