
Nick Nikiforakis

CSE 361: Web Security

Midterm Recap

HTTP BASICS

2

Uniform Resource Locator (URL)

3

http://foo:bar@example.org:80/path/to/doc.html?p1=v1&p2=v2#top

Protocol

Username/

Password

Hostname

Port

Path

Query

String

Fragment

Fragments are not sent

to the server

HTTP Evolution over Time: HTTP 1.0 (1991-1995)

• Requirements

• serve content other than plain text documents

• allow for authentication

• allow for transmission of meta information, e.g.,

age of file

• transmit data to the server (via forms)

• Result

• Mandatory HTTP version in request

• Optional headers in request and response

• Status Line in response

• New methods: POST and HEAD

GET / HTTP/1.0
Host: example.org

HTTP/1.0 200 OK
Content-Length: 123

<html>…
(connection closed)

4

HTTP Requests (since HTTP/1.0)

• Consists of several, partially optional

components

• Request Line with Verb, Path, and Protocol

• List of HTTP headers, as header:value

• Empty line to end headers

• Optional body message (used, e.g., with

POST requests)

GET /index.html HTTP/1.0
Host: stonybrook.edu
Cookie: hello=1

5

HTTP GET request

• Purpose: retrieve resource from server

• Should not cause side effects on Web server’s state

• dubbed "idempotent" in W3C standard

• although it does often cause side effects in practice, due to developers

• Should not carry a message body

• Parameters passed via URL

• Special characters percent-encoded (hex value of char, e.g., ? = %3F)

• Usually logged on server side together with requested file

GET /index.html?name=value%3F HTTP/1.0
Host: stonybrook.edu

6

HTTP POST request

• Purpose: send data to the server

• for storage or processing

• should be used for state-changing operations

• Can be combined with GET parameters

• Message body contains data

• Depending on content-type, percent-encoded or plain

POST /index.html?name=value%3F HTTP/1.0
Host: stonybrook.edu
Content-Length: 10
Content-Type: application/json

{"a": "?"}

POST /index.html?name=value%3F HTTP/1.0
Host: stonybrook.edu
Content-Length: 5
Content-Type: application/x-www-form-urlencoded

a=%3F

7

HTTP Response (since HTTP/1.0)

• Status Line: Protocol, Status Code, and Status Text

• List of HTTP headers, as header:value

• Empty line to end headers

• Response Body

HTTP/1.0 200 OK

Server: nginx
Content-Type: text/html
Content-Length: 123

<html>…</html>

8

HTTP Response Codes

• 2xx Success

• 200 OK

• 206 Partial Content (for range requests)

• 3xx Redirection

• 301 Moved Permanently (always redirect to new URL)

• 302 Found (redirect once, don’t store redirect)

• 304 Not Modified (not changed since last client request, not transferred)

• 307 Moved Temporarily (only redirect to new URL this time)

9

HTTP Response Codes

• 4xx Client errors

• 400 Bad Request (e.g., no carriage return in HTTP request)

• 401 Unauthorized (used for HTTP authentication)

• 403 Forbidden

• 404 Not Found

• 405 Method Not Allowed

• 418 I’m a teapot (April Fool’s Joke, see RFC 2324)

• 5xx Server errors

• 500 Internal Server Error

• 502 Bad Gateway (e.g., timeout in reverse proxies)

10

HTTP Evolution over Time: HTTP 1.1 (finalized 1999)

• Requirements

• Increased resource size requires other transport and caching strategies

• Fix some ambiguities in the previous protocol versions

• Assess server’s capabilities to handle requests

• Result

• New methods: PUT (similar to POST), DELETE,

TRACE, CONNECT (proxies), OPTIONS

• Keep-Alive connections

• Accept-Encoding info for the server

• Chunked transfers, range transfers

• Standardized in RFC 2616

GET / HTTP/1.1
Host: example.org

HTTP/1.0 200 OK
Transfer-Encoding: chunked

7b
<html>…
0
(connection closed)

11

Threat models

12

Basic Web Paradigm

http://example.com

13

Modern Web Applications

http://example.com

Integration of third-party code

(e.g., Facebook apps)

14

Modern Web Applications

http://example.com

Integration of third-party code

and data as part of Mashup

15

Modern Web Applications

http://example.com

Integration of third-party code

as cross-domain JS libraries

16

Modern Web Applications

http://example.com

Increasing usage of third-party

JavaScript frameworks

17

Modern Web Applications

http://example.com

Client-side components for

cross-domain communication

18

Modern Web Applications

http://example.com

(Partial) reliance on third-party

authentication providers

19

Modern Web Applications

http://example.com

Secondary view tailored for

usage with mobile devices

20

Security Implications

http://example.com

We merely control the server

21

Possible Attackers on the Web

http://example.com

22

Network Attacker

• Resides somewhere in the communication link between client and

server

• Tries to disturb the confidentiality, integrity, and authenticity of the

connection

• Observation of traffic (passive eavesdropper)

• Fabrication of traffic (e.g., injecting fake packets)

• Disruption of traffic (e.g., selective dropping of packets)

• Modification of traffic (e.g., changing unencrypted HTTP traffic)

• "Man in the middle" (MITM)

23

Remote Attacker

• Can connect to remote system via the network

• mostly targets the server

• Attempts to compromise the system (server-side attacks)

• Arbitrary code execution

• Information exfiltration (e.g., SQL injections)

• Information modification

• Denial of Service

24

Web Attacker

• Attacker specific to Web applications

• "Man in the browser"

• can create HTTP requests within user's browser

• can leverage the user's state (e.g., session cookies)

• Case of "confused deputy"

• Examples

• Cross-Site Scripting attacker: can execute arbitrary

JavaScript in authenticated user's context

• Cross-Site Request Forgery attacker: can force user's

browser to execute certain operations on vulnerable site

http://example.com

25

Social Engineering Attacker

• No real technical capabilities

• Abusing users rather than software vulnerabilities

• Can lure victim to perform certain tasks

• Clickjacking

• May use technical measures to ease his task

• Unicode URLs to easily fake

• Use well-known icons to suggest "secure" sites

26

Adding State to HTTP

• Recall: no inherent state in HTTP

• server does not keep any state after TCP connection is closed

• For static content sites, no problem

• developing "applications" is impossible though

• e.g., shopping cart on Amazon

• Need to introduce state in HTTP

• in the form of "sessions"

27

Option 1: HTTP Authentication

• Associate user with state on server

• unclear when the "sessions" ends

• Authentication done by Web server

• not by application itself, impossible to use in multi-tenant architectures

• Implements "pulling" of credentials

• User: "Please give me resource X"

• Server: "No, please tell me who you are"

• User: "Ok, I am alice and my password is nu7^yjUtasw "

• Logout non-trivial

• browser always sends along authentication header

GET /protected

GET /protected HTTP
Authorization: Basic … <base64>

HTTP 401 Unauthorized

WWW-Authenicate: Basic realm="…"

28

Cookie directives

• HttpOnly, disallows access from JavaScript via document.cookie

• Secure, only transmit cookie over secure connection

• Can only be set from HTTPS connections

• SameSite=None/Strict/Lax

• Strict: do not transmit cookies on any cross-site request

• Lax: only transmit cookies on "safe" top-level navigation

• Safe methods (per RFC 7231): GET, HEAD, OPTIONS, (TRACE)

• None: explicit opt-in for cross-site requests, requires Secure

• Browsers will default to SameSite=Lax soon (Chrome already does so, FF

and Edge warn)

29

JavaScript in Web documents

• JavaScript can be included in script tags or event handlers

• <script>var hello="world";</script>

• <script src="http://hello.world"></script>

• Click me

• Each script tag or event handler is separate parsing block

• code not executed when parsing error occurs

• other scripts’ execution is not interrupted

• Rendering of document stops until script is executed

• especially important when HTML is written by JavaScript

• All scripts run in same global space (of including page)

30

JavaScript Variable Scoping

• Variables without var keyword always in global scope

• Variables with var keyword as specified in current scope (function-level)

• Gotcha: in top-level script code, that is the global scope

• Public members of object use this keyword, private members var

function Container(param) {
var member = param;

}

var a = new Container(1);
a.member
// > undefined

function Container(param) {
this.member = param;

}

var a = new Container(1);
a.member
// > 1

function Container(param) {
var member = param;
this.getmember = function() {
return member; }

}

var a = new Container(1);
a.getmember()
// > 1

31

(Almost) everything in JavaScript can be

overwritten/deleted

eval("var a='hello'")
a
// > "hello"

eval = alert;

eval("var a='hello');
// opens alert box

var oAlert = alert;
alert = function(x) {

console.log(x);
oAlert(x);

}
alert(1);
// log 1 to console
// opens alert box

var oAlert = alert;
delete alert;

alert(1);
// Uncaught ReferenceError: alert is not defined

oAlert(1)
// opens alert box

32

Document Object Model (DOM) and Browser APIs

• Exposed to JavaScript through global objects

• document: Access to the document (e.g., cookies, head/body)

• navigator: Information about the browser (e.g., UA, plugins)

• screen: Information about the screen (e.g., dimension, color depth)

• location: Access to the URL (read and modify)

• history: Navigation

• Global object is called window, current object is self

a = "Hello";
a === window.a;
> true

document.location === location;
> true

self === window;
> true

33

Password-based Authentication

• Passwords are key to the process of authentication

• Authentication is at the heart of security

34

Authentication Authorization

How do I

know you are,

who you say

your are?

Are you

allowed to do

the thing you

are asking?

Password-based Authentication

User has a secret password.

System checks it to authenticate the user.

• How is the password communicated?

• Eavesdropping risk (We will see later how crypto can be used)

• How is the password stored?

• In the clear? Encrypted? Hashed?

• How does the system check the password?

• How easy is it to guess the password?

• Easy-to-remember passwords tend to be easy to guess

35

Attackers

• What is the threat model?

• Online attacker

• Tries to login to a service by iteratively trying passwords and looking whether he was

successful

• Offline attacker

• Stole password database and tries to recover the, hopefully protected, passwords

• Also known as a “dictionary attack”

• Against one user

• Against all/any user

36

How do attackers use passwords?

• Once a database of credentials is leaked, attackers can use them in

multiple ways

• Extract emails and usernames

• Chances are that users are reusing the same username/email address in other unrelated

services

• Learn what are the most common passwords that most users use

• Learn what are the passwords that specific users use

37

Username Password

alice@gmail.com ilovedogs

bob@yahoo.com Password!

eve@outlook.com 1q2w3e4r

john@stonybrook.edu g@rfield1

mailto:alice@gmail.com
mailto:bob@yahoo.com
mailto:eve@outlook.com
mailto:john@stonybrook.edu

Credential stuffing

• Attackers build programs that try these credentials against other

services

• These programs act like regular users trying to log in

• Attackers bet on users reusing their passwords

38

supercutecats.com

Username Password

alice@gmail.com ilovedogs

bob@yahoo.com Password!

eve@outlook.com 1q2w3e4r

john@stonybrook.edu g@rfield1

mailto:alice@gmail.com
mailto:bob@yahoo.com
mailto:eve@outlook.com
mailto:john@stonybrook.edu

Sample Cryptographic hash functions

Name Year of

release

Digest size (output

size)

MD5 (Media Digest 5) 1992 128-bit

SHA-1 (Secure Hash

Algorithm 1)

1995 160-bit

SHA-256 (Part of the

SHA-2 family)

2001 256-bit

39

MD5(“helloworld”) = d73b04b0e696b0945283defa3eee4538

SHA-1(“helloworld”) = e7509a8c032f3bc2a8df1df476f8ef03436185fa

SHA-256(“helloworld”) = 8cd07f3a5ff98f2a78cfc366c13fb123eb8d29c1ca37c79df190425d5b9e424d

Salting

• Instead of just hashing the user’s password, hash the user’s password

when concatenated with a per-user random value

40

Username Password

nick 94AEFB8BE78B2B7C344D11D
1BA8A79EF087ECEB19150881
F69460B8772753263

Username Salt Password

nick 199654 1C8622F514E7BB8B86210FE8
83D48CC55C5BEDA849DAF74
6AFFFDEC757952F77

SHA256(“mysecretpassword”)

SHA256(“199654mysecretpassword”)

PBKDF2 + HMAC-SHA-256

41

Image source: https://nakedsecurity.sophos.com/2013/11/20/serious-security-how-to-store-your-users-passwords-safely/

Password Managers

• One place where all your passwords are stored
• This place is protected with one master password

• Flavors:
• Online versus Offline (e.g. LastPass versus KeePass)

• Benefits
• No need to remember any more passwords (other than the master phrase)

• Unique password per website (no more password reuse)

• Most password managers also have their own password generators to automatically create
strong passwords

• Disadvantages
• Single-point of failure

• This can be easily mitigated by storing multiple copies of the database

• Lock yourself out
• If you forget your master password, there is no way to recover passwords

• Cannot authenticate to services if you don’t have access to the password manager

42

Challenge-Response

user system

secret

challenge value

f(secret,challenge)

Why is this better than the password over a network?

secret

Something you have - SMS

• Text messages (SMS) as a 2-factor
authentication method is falling out of favor.

• NIST has mentioned that it is deprecated and
when possible, services should use hardware
tokens or smartphone apps to deliver codes

• Reasons

• Too many incidents of attackers social
engineering phone companies into sending
them SIM cards because the real owner “lost
their phone”

• Telcos in authoritarian governments can
cooperate with their governments

• Phone networks and their protocols are not
exactly the most secure ones

44

Time-based One Time Passwords (TOTP) apps

• TOTP(K,C) = Truncate(HMAC-SHA-1(K,T))

• K: Shared secret key

• One copy in your app, one copy on the server

• T: Current time (in specific steps)

• Default time step of 30 seconds

• Resynchronization options

• Allow for client-clocks being

slightly slower / slightly faster

• Potentially ask for additional codes

45

Image:https://www.twilio.com/docs/glossary/totp

Something you are

• Biometrics
• Fingerprints

• Palms

• Face

• Iris/Retina scanning

• Voice

• How you walk? How you type? How you swipe?
• Research in continuous authentication

• Benefits
• Nothing to remember

• Passive (nothing to type, always carrying them
around)

• Can’t share

• Can be fairly unique

46

decision

threshold (t)
imposter

profile

profile of

genuine user

false

match

possible

false

nonmatch

possible

Matching score (s)
average matching

value of imposter

average matching

value of genuine user

Probability

density function

Figure 3.9 Profiles of a Biometric Characteristic of an Imposter and an Authorized

Users In this depiction, the comparison between presented feature and a reference

feature is reduced to a single numeric value. If the input value (s) is greater than a

preassigned threshold (t), a match is declared.
Image Source: Computer

Security: Principles and Practice

Communication between different websites

48

The Same-Origin Policy for JavaScript

• Most basic access control policy

• controls how active content can access resources

• Same-Origin Policy for JavaScript for three actions

• Script access to other document in same browser

• frames/iframes

• (popup) windows

• Script access to application-specific local state

• cookies, Web Storage, or IndexedDB

• Explicit HTTP requests to other hosts

• XMLHttpRequest

49

The Same-Origin Policy for JavaScript

• Only allows access if origins match

• Origin defined by protocol, hostname, and port

50

http://example.org:80/path/

Protocol Hostname Port

Originating document Accessed document Non-IE Browser Internet Explorer

http://example.org/a http://example.org/b

http://example.org http://www.example.org

http://example.org https://example.org

http://example.org http://example.org:81

Domain Relaxation

• Two sub-domains of a common parent domain want to communicate

• Notably: can overwrite different port!

• Browsers allow setting document.domain property

• Can only be set to valid suffix including parent domain

• test.example.org -> example.org ok

• example.org -> org forbidden

• When first introduced, relaxation of single sub-domain was sufficient

• Nowadays: both (sub-)domains must explicitly set document.domain

51

Domain Relaxation

52

http://sub.kittenpics.org

http://kittenpics.org

document.domain = "kittenpics.org"

document.domain = "kittenpics.org"

Domain Relaxation

53

http://sub.kittenpics.org

http://kittenpics.org

document.domain = "kittenpics.org"

Cross-Origin Communication

Cross-Domain Communication: JSONP

• Recall Web model: may include resources from remote origins

• access from JavaScript to cross-domain resources is restricted though

• Weird case: scripts

• can be included from remote origin

• execute in including origin (side effects observable on global scope)

• source code not accessible from including page

• JSONP ("JSON with Padding") (ab)uses this

• callback function as parameter

• creates script code dynamically

55

JSONP Concept

56

http://google.com https://mail.google.com

<script>
function read(userdata) {

// handle userdata here
}
</script>
<script
src="https://mail.google.com/user.js?cb
=read"></script>

$.getJSON("https://mail.google.com/user
data.json", function (userdata) {
// handle userdata here

}

GET /user.js?cb=read

Hostnames

do not

match

GET /userdata.json

read()

CORS Concept (simple request)

57

https://google.com/secrettoken https://mail.google.com

var xhr = new XMLHttpRequest();
xhr.open('GET',
'https://mail.google.com/userdata.json'
);
xhr.withCredentials = true;
xhr.send(null);

GET /userdata.json
Origin: http://google.com

HTTP/1.1 200 OK

Access-Control-Allow-Origin:

https://google.com

Access-Control-Allow-

Credentials: true

https://google.com/

CORS Preflight requests

58

https://google.com
https://mail.google.com

var xhr = new XMLHttpRequest();
xhr.open('GET',
'https://mail.google.com/userdata.json',
true);
xhr.setRequestHeader('Custom', 'Header')
xhr.withCredentials = true;
xhr.send(null);

GET /userdata.json
Custom: Header

OPTIONS /userdata.json
Origin: https://google.com
Access-Control-Request-Headers: Custom
Access-Control-Request-Method: GET

HTTP/1.1 200 OK

Access-Control-Allow-Origin:

https://google.com

Access-Control-Allow-Credentials: true

Access-Control-Allow-Headers: Custom

Access-Control-Allow-Methods: GET

http://google.de/

postMessage Concept

59

// sender
var message = {/* would contain some data */}
var other_site = document.

getElementById("other_site");

other_site.contentWindow.postMessage(
message,
'http://other.site');

http://main.site

http://other.site

window.addEventListener("message", receiveMessage, false);

function receiveMessage(event)
{
if (event.origin !== "http://main.site")
return;

var message = event.data;
process(message);

}

window.addEventListener("message",
receiveMessage);

function receiveMessage(event)
{

if (event.origin !== "http://main.site")
return;

var message = event.data;
process(message);

}

Bypassing SOP

60

DNS Rebinding - Concept

61

I want to go to

kittenpics.org

kittenpics.org?

194.213.5.8

10.10.10.20

10.10.10.10

function getInternal() {
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://kittenpics.org");
xhr.send();
...

}
setTimeout(getInternal, 1000);

kittenpics.org

A 194.213.5.8

TTL 1s

DNS Rebinding - Concept

62

194.213.5.8

10.10.10.20

10.10.10.10

function getInternal() {
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://kittenpics.org");
xhr.send();
...

}
setTimeout(getInternal, 1000);

kittenpics.org?

kittenpics.org

A 10.10.10.20

TTL 1s

Dimensions of Cross-Site Scripting

63

Server Client

Reflected

Persistent

echo "Welcome ".
$_GET["name"];

mysql_query("INSERT INTO posts ...");
// ..
$res = mysql_query("SELECT * FROM posts");
while ($row = mysql_fetch_array($res)) {
print $res[0];

}

document.write("Welcome " +
location.hash.slice(1));

localStorage.setItem("name",
location.hash.slice(1));

// ..
document.write("Welcome " +

localStorage.getItem("name"));

Preventing Server-Side Cross-Site Scripting

• Option 1: Input Validation/Sanitization

• Check input against list of
allowed/expected characters

• Is this a number? Is this an email?

• Can only be considered first line of defense

• Usage of data might not be known at that point

• Hard to get right, for the general case

• (bad) alternative: removing unwanted elements

• Known as blacklisting/blocklisting

• e.g., all script tags

• simple replace does not suffice:
<scr<script>ipt>

64

foreach ($_REQUEST as $key => value) {
$_REQUEST[$key] = preg_replace("[^0-9a-zA-Z]",

"", $value);
}
//
$username = base64_decode($_REQUEST["user"]);

Preventing Server-Side Cross-Site Scripting

• Option 2: Output Encoding

• When using the data, encode it

• depending on context, different encoders might be necessary

65

PHPHTML Encoding

Preventing Server-Side Cross-Site Scripting

• Option 2: Output Encoding

• When using the data, encode it

• depending on context, different encoders might be necessary

66

URL Encoding
PHP

67

Example policy on paypal.com

CSP Level 1 - Controlling scripting resources

• script-src directive

• Specifically controls where scripts can be loaded from

• If provided, inline scripts and eval will not be allowed

• Many different ways to control sources

• 'none' - no scripts can be included from any host

• 'self' - only own origin

• https://domain.com/specificscript.js

• https://*.domain.com - any subdomain of domain.com, any script on them

• https: - any origin delivered via HTTPS

• 'unsafe-inline' / 'unsafe-eval' - reenables inline handlers and eval

68

CSP Level 1 - Controlling additional resources

• img-src, style-src, font-src, object-src, media-src

• Controls non-scripting resources: images, CSS, fonts, objects, audio/video

• frame-src

• Controls from which origins frames may be added to a page

• connect-src

• Controls XMLHttpRequest, WebSockets (and other) connection targets

• default-src

• Serves as fallback for all fetch directives (all of the above)

• Only used when specific directive is absent

69

Content Security Policy (CSP)

• XSS boils down to execution of attacker-created script in vulnerable Web site

• Browser cannot differentiate between intended and unintended scripts

• Proposed mitigation: Content Security Policy

• explicitly allow resources which are trusted by the developer

• disallow dangerous JavaScript constructs like eval or event handlers

• delivered as HTTP header or in meta element in page (only subset of directives
supported)

• enforced by the browser (all policies must be satisfied)

• First candidate recommendation in 2012, currently at Level 3

• Important: does not stop XSS, tries to mitigate its effects

• similar to, e.g., the NX bit for stacks on x86/x64

70

CSP Level 2 - Allowed hosts with Nonces or Hashes

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53'
'sha256-5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

71

SHA256 matches value

of CSP header

SHA256 does not match

<script>
alert('My hash is correct');
</script>

<script>
alert('My hash is correct');

</script>

CSP Level 2 - Allowed hosts with Nonces or Hashes

script-src 'self' https://cdn.example.org
'nonce-d90e0153c074f6c3fcf53'
'sha256-5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

72

Script nonce matches

CSP header

Script nonce does not

match CSP header

<script nonce=“d90e0153c074f6c3fcf53”>
alert("It’s all good");
</script>

<script nonce=“nocluehackplz”>
alert(‘I will not work');

</script>

End of recap

73

	Slide 1
	Slide 2: HTTP BASICS
	Slide 3: Uniform Resource Locator (URL)
	Slide 4: HTTP Evolution over Time: HTTP 1.0 (1991-1995)
	Slide 5: HTTP Requests (since HTTP/1.0)
	Slide 6: HTTP GET request
	Slide 7: HTTP POST request
	Slide 8: HTTP Response (since HTTP/1.0)
	Slide 9: HTTP Response Codes
	Slide 10: HTTP Response Codes
	Slide 11: HTTP Evolution over Time: HTTP 1.1 (finalized 1999)
	Slide 12: Threat models
	Slide 13: Basic Web Paradigm
	Slide 14: Modern Web Applications
	Slide 15: Modern Web Applications
	Slide 16: Modern Web Applications
	Slide 17: Modern Web Applications
	Slide 18: Modern Web Applications
	Slide 19: Modern Web Applications
	Slide 20: Modern Web Applications
	Slide 21: Security Implications
	Slide 22: Possible Attackers on the Web
	Slide 23: Network Attacker
	Slide 24: Remote Attacker
	Slide 25: Web Attacker
	Slide 26: Social Engineering Attacker
	Slide 27: Adding State to HTTP
	Slide 28: Option 1: HTTP Authentication
	Slide 29: Cookie directives
	Slide 30: JavaScript in Web documents
	Slide 31: JavaScript Variable Scoping
	Slide 32: (Almost) everything in JavaScript can be overwritten/deleted
	Slide 33: Document Object Model (DOM) and Browser APIs
	Slide 34: Password-based Authentication
	Slide 35: Password-based Authentication
	Slide 36: Attackers
	Slide 37: How do attackers use passwords?
	Slide 38: Credential stuffing
	Slide 39: Sample Cryptographic hash functions
	Slide 40: Salting
	Slide 41: PBKDF2 + HMAC-SHA-256
	Slide 42: Password Managers
	Slide 43: Challenge-Response
	Slide 44: Something you have - SMS
	Slide 45: Time-based One Time Passwords (TOTP) apps
	Slide 46: Something you are
	Slide 47
	Slide 48: Communication between different websites
	Slide 49: The Same-Origin Policy for JavaScript
	Slide 50: The Same-Origin Policy for JavaScript
	Slide 51: Domain Relaxation
	Slide 52: Domain Relaxation
	Slide 53: Domain Relaxation
	Slide 54: Cross-Origin Communication
	Slide 55: Cross-Domain Communication: JSONP
	Slide 56: JSONP Concept
	Slide 57: CORS Concept (simple request)
	Slide 58: CORS Preflight requests
	Slide 59: postMessage Concept
	Slide 60: Bypassing SOP
	Slide 61: DNS Rebinding - Concept
	Slide 62: DNS Rebinding - Concept
	Slide 63: Dimensions of Cross-Site Scripting
	Slide 64: Preventing Server-Side Cross-Site Scripting
	Slide 65: Preventing Server-Side Cross-Site Scripting
	Slide 66: Preventing Server-Side Cross-Site Scripting
	Slide 67
	Slide 68: CSP Level 1 - Controlling scripting resources
	Slide 69: CSP Level 1 - Controlling additional resources
	Slide 70: Content Security Policy (CSP)
	Slide 71: CSP Level 2 - Allowed hosts with Nonces or Hashes
	Slide 72: CSP Level 2 - Allowed hosts with Nonces or Hashes
	Slide 73: End of recap

