
Nick Nikiforakis

CSE 361: Web Security

CSRF, XSSI, SRI, and Sandboxing

CSRF (Sea Surf)

Regular Web site usage

3

https://acmebank.com

Transfer OK

123-456-789

$50

<form method=“POST”
target=https://acmebank.com/transfer>

 <input type=“text” name=“acct-to”>

 <input type=“text” name=“amount”>

 <input type=“submit”>

</form>

Behind the scenes

Forcing browser to perform an action for the attacker

4

http://kittenpics.org

<form method="POST" action="https://acmebank.com/transfer"
id="transfer">
<input type="hidden" name="act-to" value="987-654-3210">
<input type="hidden" name="amount" value="100000">
</form>
<script>
transfer.submit()
</script>

Processing

transaction

Cross-Site Request Forgery (CSRF / "Sea Surf")

• Web application does not ensure that state-changing request came from

"within" the application itself

• Attack works for GET ...

• Image tag with src attribute:

• Hidden iframes, css files, scripts, ...

• and POST

• create iframe (or pop-up window)

• fill created viewport with prefilled form

• submit form

5

CSRF Examples: digg.com (2006)

• digg.com determines frontpage based on

how many "diggs" a story gets

• vulnerable against CSRF, could be used to

digg an URL of the attacker's choosing

• Guess which article made it to the front page...

6

CSRF Example: WordPress < 2.06 (2007)

• WordPress theme editor was susceptible

• WordPress themes are PHP files

• Attacker could modify files when logged-in

admin visited his page

• arbitrary code execution on targeted page

7

CSRF Example: Gmail filters (2007)

• Google Mail insufficiently protected against CSRF

• Attacker could add mail filters

• e.g., forward all emails to a certain address

• According to a victim, this led to a domain takeover

• Attacker adds redirect filter

• Attacker request AUTH code for domain transfer

8

http://www.davidairey.com/google-gmail-security-hijack/

CSRF Example: TP-Link routers (CVE-2013-2645)

• TP-Link Web interface was vulnerable to configuration changes via

CSRF

• set root of built-in FTP server, enable FTP via WAN, ...

• modify DNS server

• Exploited in the wild to change DNS server

• redirects all DNS traffic to attacker's server

• leaking all visited domains

• allowing for trivial MitM attacks

• Only worked when user was logged in

9

CSRF in 2017 to 2019

• CVE-2017-7404 D-Link router, firmware upload possible

• CVE-2017-9934 Joomla! CSRF to XSS

• CVE-2018-100053 LimeSurvey Delete Themes

• CVE-2018-6288 Kaspersky Secure Mail

Gateway Admin Account Takeover

• CVE-2019-10673 WordPress CSRF to change

admin email, password recovery for full compromise

10

(Not really) Preventing CSRF: Refer(r)er Checking

• CSRF entails cross-domain requests

• in theory, these should carry a referrer

• server could decide based on header

• In practice, there are several problems

• Middleboxes/proxies might strip (complete URL is sent, privacy concerns)

• Attacker may strip Referer header by

• using a data: URL

• Referrer-Policy header

• Utility vs. Security trade-off

• what do we do when the header is not present?

11

Preventing CSRF: Origin Header Checking

• Privacy-friendly version of Referer

• Contains only the origin, not the complete

URL

• Always sent along XMLHttpRequests and

WebSockets

• requires changing program logic to use these

requests for state-changing operations

• In modern browsers, also sent along with

any cross-origin POST requests

• server should not necessarily rely on only

having modern clients, though

12

Mechanism Sent URL

Referer https://www.news.com/bl

ahblah?foo=bar

Origin https://www.news.com

What the third-party website receives

Regular Web site usage

13

https://acmebank.com

Transfer OK

123-456-789

$50

<form method=“POST”

target=https://acmebank.com/transfer>

 <input type=“text” name=“acct-to”>

 <input type=“text” name=“amount”>

 <input type=“hidden” name=“tk” value=“n73gn9ia345ntu”

 <input type=“submit”>

</form>

Behind the scenes

14

http://kittenpics.org

<form method="POST" action="https://acmebank.com/transfer"
id="transfer">
<input type="hidden" name="act-to" value="987-654-3210">
<input type="hidden" name="amount" value="100000">
 <input type="hidden" name="tk" value="noclue">
</form>
<script>
transfer.submit()
</script>

Invalid token

no transaction

Preventing CSRF: Using CSRF tokens/nonces

Preventing CSRF: Using CSRF tokens/nonces

• Server generates token randomly for user

• stores currently valid token in session for user

• Tokens are placed in all forms

• inaccessible to the attacker without an XSS due to the SOP

• On submission, checks server-side token against submitted token

• only allows action if tokens match

• Assures that a request's origin must be in the same origin

15

Preventing CSRF: Double Submit Cookie

16

Transfer OK

Token

Token
Form Token

https://acmebank.com

123-456-789

$50

Preventing CSRF: Double Submit Cookie

• Require value in posted content to match value of certain cookie

• generate token randomly on server, store in cookie

• insert cookie's value into each form

• server-side addition for protected forms or

• via JavaScript after form was loaded

• Advantage: no server-side state required

• just compare submitted form value against cookie

• Disadvantage: cookie tossing

• If an attacker controls a subdomain, he might set token value

• if the server only compares cookie and form token, CSRF protection is

bypassed

17

Preventing CSRF: Custom Headers

• Idea: use XMLHttpRequests for all state-changing requests

• and attach a custom header (e.g., "X-CSRF-Free")

• only handle requests with that header on the server

• Protection by existing technologies

• Same-domain requests are always allowed

• Cross-domain requests with custom headers requires pre-flight CORS

request

• Advantage: no server-side state or randomness required

• Disadvantage: applications must be changed

18

Preventing CSRF: Same-Site Cookies

• Two modes

• Strict: even in top-level navigation, never send cookies with cross-origin

request

• if facebook.com set that, every user following a link there would not be logged in

• Lax: non top-level navigation will not send cookies

• cookies only send along with safe requests (GET, HEAD, OPTIONS, TRACE)

• protects against POST-based CSRF, not against GET-based though

• Until May 2018 only supported by Chrome and Opera

• Since Chrome 80, defaults to SameSite=lax

• SameSite=none only works with Secure flag

19

http://facebook.com/

CSRF Conclusion

• CSRF caused by servers accepting requests from outside their origin

• hard to determine based on Referer header though

• CSRF can have severe effects

• compromised firmware, hijacked Web sites, ...

• Several options for fixing exist

• CSRF tokens nowadays implemented in any (good) framework

• protection can be achieved using well-established principles (SOP, CORS)

• SameSite cookies also address the issue, already default in Chrome

• Support still varies (https://caniuse.com/?search=samesite)

• Use defense in depth

20

https://caniuse.com/?search=samesite

Cross-Origin Data Leakage

JSON/JavaScript Hijacking (2006)

• Recall from previous lectures

• script inclusion is exempt from SOP

• all requests are made with cookies attached

22

http://kittenpics.org

<script src="//gmail.com/contacts.json">
</script>

JSON/JavaScript Hijacking (2006)

• Recall from previous lectures

• script inclusion is exempt from SOP

• all requests are made with cookies attached

23

http://kittenpics.org

<script>
// Override array constructor
function Array() {

// Steal data here
}
</script>
<script src="//gmail.com/contacts.json">
</script>

Based on browser quirks,

fixed nowadays

Cross-Site Scripting Inclusion (XSSI)

• Regular scripts may also be dynamically generated

• We cannot read the source code, but can observe side-effects

24

http://kittenpics.org

<script>
// Register global function
function show_contacts(contacts) {

// Steal data here
}
</script>
<script src="//gmail.com/contacts.js">
</script>

Exploiting XSSI

25

// Local variable at top level
var first_name = "John";
// Global variable due to missing var keyword
last_name = "Doe";
// Explicitly defined global variable
window.user_email = "john@doe.com";

function example() {
var email = "john@doe.com";
window.MyLibrary.doSomething(email);

}

example();

console.log(first_name);
console.log(last_name);
console.log(user_email);

window.MyLibrary = {};
window.MyLibrary.doSomething =
function(email) { console.log(email); }

Exploiting XSSI

26

function example2() {
var secret_values = ["secret", "more secret"];

secret_values.forEach(function(secret) {
// do something secret in here

});
}
example2();

Array.prototype.forEach = function(callback) {
// "this" is bound secret_values
console.log(this);

}

(function() {
function test(someInput) {

var email = "john@doe.com";
doNothingWithEmail(someInput);

}

test.call(someThing, "myInput");
})();

Function.prototype.call = function() {
// "this" is bound test
console.log(this.toString());

};

Exploiting XSSI

• Trivial case: global variables registered

• simply access the variable (registered in global scope of site)

• Little more involved: global function called

• overwrite function (if necessary, create object before)

• Local variables accessible if functions are called on them

• overwrite prototype

• e.g., forEach or call

27

Identifying potential XSSI [USENIX15]

• On each page visit, request included scripts twice

• with and without cookies

• Diff the two results

28

http://gmail.com

<script src="//gmail.com/contacts.js"></script>

XSSI in the Wild [USENIX15]

• Conducted a study of 150 highest-ranked sites with logins

• sites for which we could create a login (not banks, for example)

• Several high impact flaws

• leaked credit card info on my own bank

• reading senders and subjects of emails

• account hijacking for file hosting service

29

Domains Exploitable

Dynamic scripts 49 40

Unique identifier 34 28

Other personal data 15 11

CSRF / auth tokens 7 4

Preventing XSSI

• Scripts must not be loadable from other origins

• referrer checking (recall the problems associated with that)

• use of secret tokens (similar to CSRF)

• Only provide code in scripts, use provisioning service for data

• use XHR to retrieve data

• easily protectable by SOP or CORS

• Use inline scripts only

• with CSP nonces, even possible to use with CSP

• can not be included remotely, hence data is secure there

30

The Great Cannon

Including third-party resources on the Web

32

http://cnn.com

<html>
....
<script src="//googletagmanager.com/tag.js">
</script>
...
</html>

var tags = "cnn.com";
document.write("Doing tagging stuff here");
// ...

Including third-party resources on the Web (with MitM)

33

http://cnn.com

<html>
....
<script src="//googletagmanager.com/tag.js">
</script>
...
</html>

var target = "http://github.com"
var x = new XMLHttpRequest();
x.open("GET", target);
// ...

The Great Cannon

• China already has a powerful firewall

• "The Great Firewall"

• drops unwanted connections (e.g. NY Times)

• Mirror sites exists for blocked sites

• e.g., greatfire.org and several GitHub repos

• Great Cannon injected JavaScript into
content from, e.g., baidu.com

• millions of users opened connections to GitHub,
New York Times, greatfire.org

• Massively Distributed Denial of Service

34

https://citizenlab.ca/2015/04/chinas-great-cannon/

http://baidu.com/
http://greatfire.org/

Subresource Integrity (SRI)

• To thwart such injection attacks, SRI was proposed

• Use cryptographic hash of remote resource

• for scripts and style sheets

• if hash does not match, resource is ignored

• Protects against malicious CDNs/MitM attackers

• also allows to pin to a specific version of third-party libraries

• Should be combined with failover

35

<script src="https://code.jquery.com/jquery-2.1.4.min.js"
integrity="sha384-R4/ztc4ZlRqWjqIuvf6RX5yb/v90qNGx6fS48N0tRxiGkqveZETq72KgDVJCp2TC"
crossorigin="anonymous"></script>

<script>window.jQuery || /* reload from own domain here */;</script>

Subresource Integrity (SRI)

• SRI resources must be CORS-enabled

• otherwise, SRI could be used to test remote resource for certain content

• Integrity attribute can have multiple values

• Only strongest hash is used

• Multiple same-strength hashes are allowed but rarely used

36

<script src="https://code.jquery.com/jquery-2.1.4.min.js"
integrity="sha384-R4/ztc4ZlRqWjqIuvf6RX5yb/v90qNGx6fS48N0tRxiGkqveZETq72KgDVJCp2TC sha256-
8WqyJLuWKRBVhxXIL1jBDD7SDxU936oZkCnxQbWwJVw="
crossorigin="anonymous"></script>

<script src="https://code.jquery.com/jquery-2.1.4.min.js"
integrity="sha256-t1X5SBfMY4/0kYdt8H1CP/90GgOi1G6U9UnjC6AVYHA=
sha256-8WqyJLuWKRBVhxXIL1jBDD7SDxU936oZkCnxQbWwJVw="
crossorigin="anonymous"></script>

Subresource Integrity (SRI) [WWW’23]

37

• SRI is applicable to static scripts,

or scripts that rarely change

• What is the fraction of scripts that

remain static?

• 27% of scripts never changed

• 16% of scripts changed every day

Subresource Integrity (SRI) [WWW’23]

38

• SRI needs to be applied to every

script from each third party

• How many third-party providers

serve only static scripts?

• 44% of providers serve only static

scripts (x=0)

• 24% of providers serve only

changing scripts (y=0)

• 32% of providers serve a mix of

both

Sandboxing Content

Multi-origin Web applications

• Modern Web applications use code from multiple origins

• Analytics

• Advertisement

• Maps

•

• Even framed content may, e.g., open a popup

• or redirect the parent frame

• Necessity for control privileges of included content arises

• putting everybody in their own little sandbox

40

Sandboxing iframes

• Limits iframe's ability to conduct certain actions

• e.g., disable JavaScript, putting them in an isolated origin

• Just adding sandbox to the iframe will restrict everything

• rights have to be granted explicitly

• allow-forms: allows for form submission in iframe

• allow-popups: enables popups

• allow-pointer-lock: enable PointerLock API to get raw mouse movements

• allow-scripts: enable scripting

• allow-same-origin: enable origin of included page, not isolated one

• allow-top-navigation: enables navigating the top frame

41

Sandbox usage examples

42

<textarea id='code'></textarea>
<button id='safe'>eval() in a sandboxed frame.</button>
<iframe sandbox='allow-scripts' id='sbox' src='frame.html'>
</iframe>

<script>
function evaluate() {

sandboxed.contentWindow.postMessage(code.value, '*');
}
safe.addEventListener('click', evaluate);

window.addEventListener('message', function (e) {
if (e.origin === "null" && e.source === sbox.contentWindow)

alert('Result: ' + e.data);
});

</script>

<script>
window.addEventListener('message', function (e) {

if (e.origin !== "https://main.com") {
return

}
var mainWindow = e.source;
var result = '';

try {
result = eval(e.data);

} catch (e) {
result = 'eval() threw an exception.';

}
mainWindow.postMessage(result, e.origin);

});
</script>

Parent page frame.html

https://www.html5rocks.com/static/demos/evalbox/index.html

Determining least privilege

• Example: tweet button

• opens popup window

• submit a form

• sends authenticated request to twitter.com (using and accesses

document.cookie)

• Requires four permissions

• allow-popups (well, it opens a popup..)

• allow-forms (well, it is a form)

• allow-same-origin (JavaScript needs access to cookies)

• allow-scripts (not too much of a surprise)

43

http://twitter.com/

Determining least privilege

• Example: tweet button

• opens popup window

• submit a form

• sends authenticated request to twitter.com (using and accesses

document.cookie)

• Requires four permissions

• allow-popups (well, it opens a popup..)

• allow-forms (well, it is a form)

• allow-same-origin (JavaScript needs access to cookies)

• allow-scripts (not too much of a surprise)

44

<iframe sandbox="allow-same-origin allow-scripts allow-popups allow-forms"
src="https://platform.twitter.com/widgets/tweet_button.html"
style="border: 0; width:130px; height:20px;"></iframe>

http://twitter.com/

Sandboxing with CSP

• Limits the entire page’s ability to conduct certain actions

• as if the page were loaded in an iframe with the sandbox attribute

• What’s the difference?

• Functionally the same, but they differ in scope

• CSP sandboxing applies to the entire page

• iframe sandboxing applies only to that iframe

• When would you use one over the other?

• e.g., using CSP sandboxing on a page that is an archived instance of a web

vulnerability that triggers drive-by downloads

45

Summary

46

Credits

• Original slide deck by Ben Stock

• Modified by Nick Nikiforakis

47

	Slide 1
	Slide 2: CSRF (Sea Surf)
	Slide 3: Regular Web site usage
	Slide 4: Forcing browser to perform an action for the attacker
	Slide 5: Cross-Site Request Forgery (CSRF / "Sea Surf")
	Slide 6: CSRF Examples: digg.com (2006)
	Slide 7: CSRF Example: WordPress < 2.06 (2007)
	Slide 8: CSRF Example: Gmail filters (2007)
	Slide 9: CSRF Example: TP-Link routers (CVE-2013-2645)
	Slide 10: CSRF in 2017 to 2019
	Slide 11: (Not really) Preventing CSRF: Refer(r)er Checking
	Slide 12: Preventing CSRF: Origin Header Checking
	Slide 13: Regular Web site usage
	Slide 14: Preventing CSRF: Using CSRF tokens/nonces
	Slide 15: Preventing CSRF: Using CSRF tokens/nonces
	Slide 16: Preventing CSRF: Double Submit Cookie
	Slide 17: Preventing CSRF: Double Submit Cookie
	Slide 18: Preventing CSRF: Custom Headers
	Slide 19: Preventing CSRF: Same-Site Cookies
	Slide 20: CSRF Conclusion
	Slide 21: Cross-Origin Data Leakage
	Slide 22: JSON/JavaScript Hijacking (2006)
	Slide 23: JSON/JavaScript Hijacking (2006)
	Slide 24: Cross-Site Scripting Inclusion (XSSI)
	Slide 25: Exploiting XSSI
	Slide 26: Exploiting XSSI
	Slide 27: Exploiting XSSI
	Slide 28: Identifying potential XSSI [USENIX15]
	Slide 29: XSSI in the Wild [USENIX15]
	Slide 30: Preventing XSSI
	Slide 31: The Great Cannon
	Slide 32: Including third-party resources on the Web
	Slide 33: Including third-party resources on the Web (with MitM)
	Slide 34: The Great Cannon
	Slide 35: Subresource Integrity (SRI)
	Slide 36: Subresource Integrity (SRI)
	Slide 37: Subresource Integrity (SRI) [WWW’23]
	Slide 38: Subresource Integrity (SRI) [WWW’23]
	Slide 39: Sandboxing Content
	Slide 40: Multi-origin Web applications
	Slide 41: Sandboxing iframes
	Slide 42: Sandbox usage examples
	Slide 43: Determining least privilege
	Slide 44: Determining least privilege
	Slide 45: Sandboxing with CSP
	Slide 46: Summary
	Slide 47: Credits

